Abstract

In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express11(14), 1621–1627 (2003).
    [CrossRef] [PubMed]
  2. S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol.23(4), 1781–1786 (2005).
    [CrossRef]
  3. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express15(4), 1434–1442 (2007).
    [CrossRef] [PubMed]
  4. F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
    [CrossRef] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
    [CrossRef] [PubMed]
  6. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
    [CrossRef] [PubMed]
  7. J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature328(6126), 183–184 (1987).
    [CrossRef]
  8. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B Chem.69(1-2), 28–36 (2000).
    [CrossRef]
  9. C. Viets and W. Hill, “Comparison of fibre-optic SERS sensorswith differently prepared tips,” Sens. Actuators B Chem.51(1-3), 92–99 (1998).
    [CrossRef]
  10. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
    [CrossRef] [PubMed]
  11. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
    [CrossRef] [PubMed]
  12. L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
    [CrossRef] [PubMed]
  13. X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett.7, 901–903 (2009).
    [CrossRef]
  14. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
    [CrossRef] [PubMed]
  15. R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
    [CrossRef] [PubMed]
  16. H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
    [CrossRef] [PubMed]
  17. C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
    [CrossRef] [PubMed]
  18. C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
    [CrossRef] [PubMed]
  19. H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
    [CrossRef]
  20. N. Axelrod, A. Lewis, N. B. Yosef, R. Dekhter, G. Fish, and A. Krol, “Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization,” Appl. Opt.44(7), 1270–1282 (2005).
    [CrossRef] [PubMed]
  21. E. B. Li, “Characterization of a fiber lens,” Opt. Lett.31(2), 169–171 (2006).
    [CrossRef] [PubMed]
  22. H. E. Williams, D. J. Freppon, S. M. Kuebler, R. C. Rumpf, and M. A. Melino, “Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8,” Opt. Express19(23), 22910–22922 (2011).
    [CrossRef] [PubMed]
  23. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
    [CrossRef]
  24. M. Hocine, N. Fressengeas, G. Kugel, C. Carre, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B23(4), 611–620 (2006).
    [CrossRef]
  25. X. H. Zeng, J. Plain, S. Jradi, C. Darraud, F. Louradour, R. Bachelot, and P. Royer, “Integration of polymer microlens array at fiber bundle extremity by photopolymerization,” Opt. Express19(6), 4805–4814 (2011).
    [CrossRef] [PubMed]
  26. C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
    [CrossRef]
  27. G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
    [CrossRef]

2012 (2)

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
[CrossRef]

2011 (3)

2010 (3)

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

2009 (3)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett.7, 901–903 (2009).
[CrossRef]

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

2007 (3)

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express15(4), 1434–1442 (2007).
[CrossRef] [PubMed]

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

2006 (3)

2005 (4)

N. Axelrod, A. Lewis, N. B. Yosef, R. Dekhter, G. Fish, and A. Krol, “Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization,” Appl. Opt.44(7), 1270–1282 (2005).
[CrossRef] [PubMed]

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

S. M. Yeh, S. Y. Huang, and W. H. Cheng, “A new scheme of conical-wedge-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers,” J. Lightwave Technol.23(4), 1781–1786 (2005).
[CrossRef]

2004 (1)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

2003 (2)

2000 (1)

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B Chem.69(1-2), 28–36 (2000).
[CrossRef]

1998 (1)

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensorswith differently prepared tips,” Sens. Actuators B Chem.51(1-3), 92–99 (1998).
[CrossRef]

1987 (1)

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature328(6126), 183–184 (1987).
[CrossRef]

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Amos, W. B.

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature328(6126), 183–184 (1987).
[CrossRef]

Axelrod, N.

Bachelot, R.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, C. Darraud, F. Louradour, R. Bachelot, and P. Royer, “Integration of polymer microlens array at fiber bundle extremity by photopolymerization,” Opt. Express19(6), 4805–4814 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett.7, 901–903 (2009).
[CrossRef]

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

M. Hocine, N. Fressengeas, G. Kugel, C. Carre, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B23(4), 611–620 (2006).
[CrossRef]

Balan, L.

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Barretto, R. P.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

Baudrion, A. L.

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Belazaras, K.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Bu, J.

Capasso, F.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Carre, C.

Chang, C. H.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Chang, C. Y.

C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
[CrossRef]

Chen, W. Y.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Cheng, W. H.

Darraud, C.

Deeb, C.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Dekhter, R.

Deturche, R.

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Ecoffet, C.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Farsari, M.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Fish, G.

Freppon, D. J.

Fressengeas, N.

Gadonas, R.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Gaidukeviciute, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Gao, M. Y.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Gilbergs, H.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Gu, F. X.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

He, J. T.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

He, M.

Hill, W.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensorswith differently prepared tips,” Sens. Actuators B Chem.51(1-3), 92–99 (1998).
[CrossRef]

Hocine, M.

Hua, W. S.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Huang, L.

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Huang, L. S.

C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
[CrossRef]

Huang, S. H. Y.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Huang, S. Y.

Ibn El Ahrach, H.

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

Jain, P. K.

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Jeng, T. M.

C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
[CrossRef]

Jiang, C.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Jradi, S.

Juodkazis, S.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

Kostcheev, S.

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
[CrossRef]

Krishnamoorthy, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Krishnan, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Krol, A.

Kuebler, S. M.

Kugel, G.

Lérondel, G.

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
[CrossRef]

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Lewis, A.

Li, E. B.

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Liang, E. J.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Lin, C. C.

Liu, Y. D.

Lo, L. W.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Lougnot, D. J.

Louradour, F.

Lu, Y. K.

Malinauskas, M.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Melino, M. A.

Messerschmidt, B.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Momot, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Ngo, N. Q.

Paipulas, D.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Piskarskas, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Plain, J.

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
[CrossRef]

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, C. Darraud, F. Louradour, R. Bachelot, and P. Royer, “Integration of polymer microlens array at fiber bundle extremity by photopolymerization,” Opt. Express19(6), 4805–4814 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett.7, 901–903 (2009).
[CrossRef]

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Purlys, V.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Ren, H. L.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Renaud-Goud, P.

Royer, P.

X. H. Zeng, J. Plain, S. Jradi, C. Darraud, F. Louradour, R. Bachelot, and P. Royer, “Integration of polymer microlens array at fiber bundle extremity by photopolymerization,” Opt. Express19(6), 4805–4814 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

X. H. Zeng, J. Plain, S. Jradi, P. Renaud-Goud, R. Deturche, P. Royer, and R. Bachelot, “High speed sub-micrometric microscopy using optical polymer microlens,” Chin. Opt. Lett.7, 901–903 (2009).
[CrossRef]

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

M. Hocine, N. Fressengeas, G. Kugel, C. Carre, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B23(4), 611–620 (2006).
[CrossRef]

Rumpf, R. C.

Sakellari, I.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

Schnitzer, M. J.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Soppera, O.

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Stokes, D. L.

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B Chem.69(1-2), 28–36 (2000).
[CrossRef]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Tao, S. H.

Thoniyot, P.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Tong, L. M.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Tsai, P. J.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Tsai, Y. C.

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Vial, A.

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

Viets, C.

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensorswith differently prepared tips,” Sens. Actuators B Chem.51(1-3), 92–99 (1998).
[CrossRef]

Vo-Dinh, T.

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B Chem.69(1-2), 28–36 (2000).
[CrossRef]

Wang, H.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Wang, J. Y.

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Wang, P.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Wang, Y. T.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

White, J. G.

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature328(6126), 183–184 (1987).
[CrossRef]

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Williams, H. E.

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Yang, C. S.

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Yang, S. Y.

C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
[CrossRef]

Yang, Z. Y.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yap, F. L.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Yeh, S. M.

Yosef, N. B.

Yu, H. K.

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yuan, X. C.

Zeng, X. H.

Zukauskas, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

ACS Nano (3)

F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

C. Deeb, R. Bachelot, J. Plain, A. L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano4(8), 4579–4586 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

L. W. Lo, P. J. Tsai, S. H. Y. Huang, W. Y. Chen, Y. T. Wang, C. H. Chang, and C. S. Yang, “In vivo monitoring of fluorescent nanosphere delivery in anesthetized rats using an implantable fiber-optic microprobe,” Anal. Chem.77(4), 1125–1131 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

J. Am. Chem. Soc. (1)

C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, and O. Soppera, “Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes,” J. Am. Chem. Soc.133(27), 10535–10542 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, “A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold,” J. Micromech. Microeng.16(5), 999–1005 (2006).
[CrossRef]

J. Opt. (1)

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12(12), 124010 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett.9(3), 1132–1138 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

Nature (1)

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature328(6126), 183–184 (1987).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

H. L. Ren, C. Jiang, W. S. Hua, M. Y. Gao, J. Y. Wang, H. Wang, J. T. He, and E. J. Liang, “The preparation of optical fibre nanoprobe and its application in spectral detection,” Opt. Laser Technol.39(5), 1025–1029 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

H. Ibn El Ahrach, R. Bachelot, A. Vial, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett.98(10), 107402 (2007).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett.92(22), 220801 (2004).
[CrossRef] [PubMed]

Science (2)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (2)

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B Chem.69(1-2), 28–36 (2000).
[CrossRef]

C. Viets and W. Hill, “Comparison of fibre-optic SERS sensorswith differently prepared tips,” Sens. Actuators B Chem.51(1-3), 92–99 (1998).
[CrossRef]

Springer Se. Opt. Sci. (1)

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” Springer Se. Opt. Sci.167, 269–316 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning optical microscope based on tapered fiber lens. (a) Molecular formula and absorbance spectra of Eosin Y and Irgacure 819, respectively. (b) Schematic of polymer tapered microlens manufacture on the distal face of an optical fiber. A cleaved optical fiber is dipped into the photosensitive solution and then photo-polymerized by a laser beam. After being washed in ethanol, the fiber lens formed at the optical fiber end. (c) Schematic of the experimental setup of a high speed scanning optical microscope using a tapered fiber polymer microlens. The sample is scanned along XY plane with a minimal step of 50 nm, whereas the fiber microlens is fixed right above the photodetector in transmission. The incident laser beam and the signal by reflection is realized by a Y-shaped coupler. The motion along Z-axis is controlled by a motor with a minimal step of 30 nm and feedbacked by the interfere between the reflective and incident laser beam.

Fig. 2
Fig. 2

Tapered fiber lens fabricated by addition of inhibitor. The addition of 4-Methoxyphenol (left) results in an increase of the polymerization threshold, hence confines the lateral growth from the initial stage. With a large amount (up to 30% in weight) of 4-Methoxyphenol addition, the polymerization along axis direction can also be suppressed. (a) without inhibitor, (b) with 1% inhibitor, (c) with 5% inhibitor, d) with 30% inhibitor. The tiny fiber lens is specified by a red-doted circle. For all these results, the same exposure dose of E = 10 µJ (5 µW and 2 s) is applied.

Fig. 3
Fig. 3

Nanometric lens integrated directly on microlens. Two steps are concerned for the fabrication of this complex structure. The first step is the manufacture of a big micrometric lens on the fiber endface with a formulation without inhibitor addition. The second step is the further integration of a smaller lens with radius of some tens nanometers in just few seconds. (a) 1500 nW for 1s and 1500 nW for 2 s for the first step and second step, respectively. (b) 250 nW for 2 s and 1500 nW for 2 s for the two steps, respectively. L1 = 28µm, R1 = 380nm; L2 = 3.25µm, R2 = 120nm. (c) 2D FDTD calculation of the complex tapered structure. The structure is taken from a) with L1 = 38 µm, R1 = 1.7 µm, L2 = 7.75 µm and R2 = 75 nm. The diameter for the two lenses at the bottom is 5.8 µm and 1.2 µm, respectively. On the right, electric field component of /Ex/ for the case without (left) and with (right) a nanometric lens on the microlens are displayed, respectively. Actually,the curvature radius of microlens and nanometric lens are obtained by measurement and fitting from the enlarged SEM image.

Fig. 4
Fig. 4

Optical characterization of microlens. (a) Nanometric periodic gold Asian umbrella by electron -beam lithography serves as a standard sample. The width of the skeleton diminishes from 500 nm at the edge to 50 nm at the center. (b) showing optical image by transmission of the gold sample obtained at a distance of 2100 nm. (c) and (d) showing optical images by reflection for distances of 300 nm and 2100 nm, respectively. (e) Relative contrast values on the distances between sample and fiber microlens. (f) Selected profiles by reflection for different distances. The X coordinate axe corresponds to the scanning step number. The Y coordinate axe corresponds to the intensity for each scanning step.Different color is presented for the measured data with different distance. And the dark-gray line represents the fitting curves for all cases. For all measurements, the same fiber microlens with a curvature radius of 1725 nm and length of 30 microns is used, which is realized using 500 nW green laser beam (532 nm) to irradiate for 2 s.

Fig. 5
Fig. 5

FDTD calculation for microlens. Up: SEM images of three tapered fiber microlens with different geometry. Down: The structure design for FDTD calculation and corresponding results with two different magnifications. (a) 1500 nW and 2 s; (b) 500 nW and 2 s,; (c) 250 nW and 1 s.

Tables (1)

Tables Icon

Table 1 Focal position and focal depth of fiber microlens. Experimental results both by reflection and transmission measurements of focal position and focal depth for three microlens with different geometry. The corresponding FDTD calculation results are also listed.

Metrics