Abstract

Employing 100G polarization-multiplexed quaternary phase-shift keying (PM-QPSK) signals, we experimentally demonstrate a dual-polarization Volterra series nonlinear equalizer (VSNE) applied in frequency-domain, to mitigate intra-channel nonlinearities. The performance of the dual-polarization VSNE is assessed in both single-channel and in wavelength-division multiplexing (WDM) scenarios, providing direct comparisons with its single-polarization version and with the widely studied back-propagation split-step Fourier (SSF) approach. In single-channel transmission, the optimum power has been increased by about 1 dB, relatively to the single-polarization equalizers, and up to 3 dB over linear equalization, with a corresponding bit error rate (BER) reduction of up to 63% and 85%, respectively. Despite of the impact of inter-channel nonlinearities, we show that intra-channel nonlinear equalization is still able to provide approximately 1 dB improvement in the optimum power and a BER reduction of ∼33%, considering a 66 GHz WDM grid. By means of simulation, we demonstrate that the performance of nonlinear equalization can be substantially enhanced if both optical and electrical filtering are optimized, enabling the VSNE technique to outperform its SSF counterpart at high input powers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Pinto and G. P. Agrawal, “Nonlinear interaction between signal and noise in optical fibers,” J. Lightw. Technol.26, 1847–1853 (2008).
    [CrossRef]
  2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26, 3416–3425 (2008).
    [CrossRef]
  3. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2, 816–832 (2010).
    [CrossRef]
  4. Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.
  5. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20, 1360–1369, (2012).
    [CrossRef] [PubMed]
  6. L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
    [CrossRef]
  7. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
    [CrossRef]
  8. F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
    [CrossRef]
  9. H.-M. Chin, J. Mårtensson, and M. Forzati, “Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.61.
  10. L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” J. Lightwave Technol.30, 310–316 (2012).
    [CrossRef]
  11. F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.
  12. B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function method,” IEEE Photon. Technol. Lett.14, 47–49 (2002).
    [CrossRef]
  13. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
    [CrossRef]
  14. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.
  15. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179, 2010.
    [CrossRef]

2012 (2)

2010 (6)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179, 2010.
[CrossRef]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2, 816–832 (2010).
[CrossRef]

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

2008 (2)

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26, 3416–3425 (2008).
[CrossRef]

A. N. Pinto and G. P. Agrawal, “Nonlinear interaction between signal and noise in optical fibers,” J. Lightw. Technol.26, 1847–1853 (2008).
[CrossRef]

2002 (1)

B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function method,” IEEE Photon. Technol. Lett.14, 47–49 (2002).
[CrossRef]

Agrawal, G. P.

A. N. Pinto and G. P. Agrawal, “Nonlinear interaction between signal and noise in optical fibers,” J. Lightw. Technol.26, 1847–1853 (2008).
[CrossRef]

Bosco, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Brandt-Pearce, M.

B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function method,” IEEE Photon. Technol. Lett.14, 47–49 (2002).
[CrossRef]

Cai, Y.

Carena, A.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Chagnon, M.

Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.

Chatelain, B.

Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.

Chen, Z.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Chin, H.-M.

H.-M. Chin, J. Mårtensson, and M. Forzati, “Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.61.

Cigliutti, R.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Cui, K.

Curri, V.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Forghieri, F.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Forzati, M.

H.-M. Chin, J. Mårtensson, and M. Forzati, “Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.61.

Gao, Y.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

Guiomar, F. P.

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20, 1360–1369, (2012).
[CrossRef] [PubMed]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

Hauske, F. N.

Huang, Y.

Ip, E.

Kahn, J. M.

Li, G.

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
[CrossRef]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2, 816–832 (2010).
[CrossRef]

Li, J.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Li, L.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel nonlinearity compensation by inverse Volterra series transfer function,” J. Lightwave Technol.30, 310–316 (2012).
[CrossRef]

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Liu, L.

Luo, Y.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Mårtensson, J.

H.-M. Chin, J. Mårtensson, and M. Forzati, “Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.61.

Nespola, A.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Pan, Z.

Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.

Pinto, A. N.

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20, 1360–1369, (2012).
[CrossRef] [PubMed]

A. N. Pinto and G. P. Agrawal, “Nonlinear interaction between signal and noise in optical fibers,” J. Lightw. Technol.26, 1847–1853 (2008).
[CrossRef]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

Plant, D. V.

Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.

Poggiolini, P.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Reis, J. D.

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20, 1360–1369, (2012).
[CrossRef] [PubMed]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179, 2010.
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

Teixeira, A. L.

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express20, 1360–1369, (2012).
[CrossRef] [PubMed]

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Xie, C.

Xiong, Q.

Xu, A.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Xu, B.

B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function method,” IEEE Photon. Technol. Lett.14, 47–49 (2002).
[CrossRef]

Yaman, F.

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
[CrossRef]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2, 816–832 (2010).
[CrossRef]

Zeolla, D.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

Zhang, F.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

Zhu, L.

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
[CrossRef]

Electron. Lett. (2)

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett.46, 1140–1141 (2010).
[CrossRef]

F. Zhang, Y. Gao, Y. Luo, J. Li, L. Zhu, L. Li, Z. Chen, and A. Xu, “Experimental demonstration of intra-channel nonlinearity mitigation in coherent QPSK systems with nonlinear electrical equaliser,” Electron. Lett.46, 353–355 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179, 2010.
[CrossRef]

IEEE Photon. J. (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J.2, 816–832 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett.22, 673–675 (2010).
[CrossRef]

B. Xu and M. Brandt-Pearce, “Modified Volterra series transfer function method,” IEEE Photon. Technol. Lett.14, 47–49 (2002).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. J. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett.22, 1419–1421 (2010).
[CrossRef]

J. Lightw. Technol. (1)

A. N. Pinto and G. P. Agrawal, “Nonlinear interaction between signal and noise in optical fibers,” J. Lightw. Technol.26, 1847–1853 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (4)

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2011), paper We.7.B.2.

H.-M. Chin, J. Mårtensson, and M. Forzati, “Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.61.

F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto, “Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper Th.1.D.1.

Z. Pan, B. Chatelain, M. Chagnon, and D. V. Plant, “Volterra filtering for nonlinearity impairment mitigation in DP-16QAM and DP-QPSK fiber optic communication systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JThA040.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup of the PM-QPSK transmission system. PPG - pulse pattern generator; NMZ - nested Mach-Zehnder; WS - Finisar’s WaveShaper™; OFD - optical frequency doubler; VOA - variable optical attenuator. The dashed blocks indicate optional equipment: the WS filter is only used in setup A; the DFB lasers are employed in the WDM scenarios A.2 and A.3; the OFD is only required in scenario A.3, in order to halve the interchannel spacing from 66 GHz down to 33 GHz.

Fig. 2
Fig. 2

Sequential application of DSP subsystems for offline processing of the received signal samples stored by the Tektronix DPO71604 oscilloscope.

Fig. 3
Fig. 3

Optimization of the SSF and VSNE methods at the optimum power level, as a function of the ξ parameter, for experimental scenario A.1.

Fig. 4
Fig. 4

Experimental BER results obtained for a single-channel 120 Gb/s PM-QPSK signal, corresponding to scenario A.1 composed of 16 spans (a)) and 31 spans (b)) of NZDSF.

Fig. 5
Fig. 5

Experimental results obtained for a single-channel 100 Gb/s PM-QPSK signal, corresponding to scenario B, composed of 50 spans of SSMF. a) ξ optimization at the optimum power (1 dBm); b) BER as a function of input power.

Fig. 6
Fig. 6

Experimental BER results obtained for a 10-channel 120 Gb/s PM-QPSK signal with 66 GHz channel spacing, corresponding to scenario A.2, composed of 10 spans (a)) and 15 spans (b)) of NZDSF.

Fig. 7
Fig. 7

Experimental BER results obtained for a 10-channel 120 Gb/s PM-QPSK signal with 33 GHz channel spacing, corresponding to scenario A.3, composed of 5 spans (a)) and 10 spans (b)) of NZDSF.

Fig. 8
Fig. 8

Validation of the simulation model by comparison with the experimental results. a) Comparison of the digital equalization performance in terms of EVM; b) Comparison of signal spectra at ∼1 dBm input power and associated optical/electrical filtering.

Fig. 9
Fig. 9

EVM as a function of the LPF cutoff frequency for a fixed input power of 1 dBm, obtained by the experimentally validated simulation model.

Fig. 10
Fig. 10

Performance of nonlinear equalization as a function of LPF cutoff frequency, without the WS filter. ADC sampling rate is a) 50 Gsample/s, and b) 60 Gsample/s.

Fig. 11
Fig. 11

EVM as a function of the input power under different electrical and optical filtering conditions. Solid lines refer to the simulation setup with the WS filter and an LPF cutoff frequency of 13 GHz (experimental conditions) and 20 GHz. Dashed lines refer to the simulation setup without the WS filter and an LPF cutoff frequency of 24 GHz.

Tables (1)

Tables Icon

Table 1 Experimental setup parameters. Δf - inter-channel spacing; Rs - symbol rate.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A x / y ( z ) = α 2 A x / y + i β 2 2 2 A x / y t 2 i 8 γ 9 ( | A x | 2 + | A y | 2 ) A x / y ,
A ˜ e q x / y ( ω n ) = 8 9 n 2 = 1 N F F T n 1 = 1 N F F T K 3 P ( ω n 1 , ω n 2 ) A ˜ r x x / y ( ω n ω n 1 + ω n 2 ) ,
K 3 ( ω n 1 , ω n 2 , ω n ω n 1 + ω n 2 ) = i ξ γ exp ( α 2 L span i β 2 2 ω n 2 L span ) × 1 exp ( α L span i β 2 ( ω n 1 ω n ) ( ω n 1 ω n 2 ) L span ) α + i β 2 ( ω n 1 ω n ) ( ω n 1 ω n 2 ) ,
P ( ω n 1 , ω n 2 ) = A ˜ r x x ( ω n 1 ) A ˜ r x x * ( ω n 2 ) + A ˜ r x y ( ω n 1 ) A ˜ r x y * ( ω n 2 ) .
EVM [ dB ] = 20 log 10 ( | A eq A ref | 2 | A ref | 2 ) ,

Metrics