Abstract

Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10−6 while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
    [CrossRef]
  2. L. A. Barroso and U. Hölze, “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architectures4(1), 1–108 (2009).
    [CrossRef]
  3. R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).
  4. H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16x16 QW SOA switch,” Proceedings ECOC 2009, PD 1.7, Vienna, Austria, 2009.
  5. S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8x8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” Proceedings OFC 2009 post deadline paper B1, San Diego, USA, 2009.
  6. J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).
  7. C. Kachris and I. Tomkos, “A survey on optical interconnects for data Centers,” IEEE Communication Surveys & Tutorials PP, no. 99, 1–16, 2012.
  8. J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” Proceedings OFC 2012, OW3J.2, Los Angeles, USA, 2012.
  9. OMNeT + + Network Simulation Framework, http://www.omnetpp.org/ .
  10. J. Luo, H. J. S. Dorren, and N. Calabretta, “Optical RF tone in-band labeling for large-scale and low-latency optical packet switches,” JLT 30, 16, 2012.
  11. S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” JOCN 4, no. 9, 2012.
  12. T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic characteristics,” ACM SIGCOMM, 2010.
  13. T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” in Proc. Internet Measurement Conference (IMC), Melbourne, Australia, 2010.
  14. R. Pueyo Centelles, S. Di Lucente, H. J. S. Dorren and N. Calabretta, “On the performance of a large-scale optical packet switch under realistic data center traffic,” (submitted).
  15. A. Rohit, A. Albores-Mejia, J. Bolk, X. Leijtens, and K. Williams, “Multi-path Routing in a Monolithically Integrated 4x4 Broadcast and Select WDM Cross-connect,” Proceedings ECOC 2011, Geneva, Switzerland, 2011.
  16. N. Kikuci, Y. Shibata, Y. Tomori, “Monolithically Integrated 64-channel WDM Channel Selector,” NTT R D 51, 11, 2003.
  17. N. Calabretta, R. Stabile, A. Albores-Mejia, K. A. Williams, and H. J. S. Dorren, “InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain,” Opt. Express19(26issue 26), B531–B536 (2011).
    [CrossRef] [PubMed]
  18. M. Matsuura, N. Kishi, and T. Miki, “Ultra-Wideband Wavelength Conversion over 300 nm by Cascaded SOA-Based Wavelength Converters,” PDP OFC 2006, Anaheim, USA, 2006.

2012 (1)

J. Luo, H. J. S. Dorren, and N. Calabretta, “Optical RF tone in-band labeling for large-scale and low-latency optical packet switches,” JLT 30, 16, 2012.

2011 (2)

N. Calabretta, R. Stabile, A. Albores-Mejia, K. A. Williams, and H. J. S. Dorren, “InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain,” Opt. Express19(26issue 26), B531–B536 (2011).
[CrossRef] [PubMed]

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

2009 (1)

L. A. Barroso and U. Hölze, “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architectures4(1), 1–108 (2009).
[CrossRef]

2004 (1)

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

2003 (1)

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Albores-Mejia, A.

Alomari, M.

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

Barroso, L. A.

L. A. Barroso and U. Hölze, “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architectures4(1), 1–108 (2009).
[CrossRef]

Batista, D.

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

Bernasconi, P.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Bhardwaj, A.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Calabretta, N.

Denzel, W. E.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

Dorren, H. J. S.

Duelk, M.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Gripp, J.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Grzybowski, R. R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

Hemenway, R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

Hölze, U.

L. A. Barroso and U. Hölze, “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architectures4(1), 1–108 (2009).
[CrossRef]

Laznicka, O.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Liu, A.

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

Luijten, R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

Luo, J.

J. Luo, H. J. S. Dorren, and N. Calabretta, “Optical RF tone in-band labeling for large-scale and low-latency optical packet switches,” JLT 30, 16, 2012.

Sakr, S.

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

Simsarian, J. E.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Stabile, R.

Williams, K. A.

Zirngibl, M.

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

IEEE Commun. Surveys & Tutorials (1)

S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud environments,” IEEE Commun. Surveys & Tutorials3(13), 311–336 (2011).
[CrossRef]

JLT (1)

J. Gripp, M. Duelk, J. E. Simsarian, A. Bhardwaj, P. Bernasconi, O. Laznicka, and M. Zirngibl, “Optical switch fabrics for ultra-highcapacity IP routers,” JLT21, 2839–2850 (2003).

Lasers and Electro-Optics Society (1)

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection network: The OSMOSIS project,” Lasers and Electro-Optics Society2, 563–564 (2004).

Opt. Express (1)

Synthesis Lectures on Computer Architectures (1)

L. A. Barroso and U. Hölze, “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architectures4(1), 1–108 (2009).
[CrossRef]

Other (13)

H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, and I. H. White, “Demonstration of a lossless monolithic 16x16 QW SOA switch,” Proceedings ECOC 2009, PD 1.7, Vienna, Austria, 2009.

S. C. Nicholes, M. L. Mašanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “The world’s first InP 8x8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port,” Proceedings OFC 2009 post deadline paper B1, San Diego, USA, 2009.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data Centers,” IEEE Communication Surveys & Tutorials PP, no. 99, 1–16, 2012.

J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical packet switch with highly distributed control,” Proceedings OFC 2012, OW3J.2, Los Angeles, USA, 2012.

OMNeT + + Network Simulation Framework, http://www.omnetpp.org/ .

J. Luo, H. J. S. Dorren, and N. Calabretta, “Optical RF tone in-band labeling for large-scale and low-latency optical packet switches,” JLT 30, 16, 2012.

S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling low-latency optical packet switches to a thousand ports,” JOCN 4, no. 9, 2012.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic characteristics,” ACM SIGCOMM, 2010.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” in Proc. Internet Measurement Conference (IMC), Melbourne, Australia, 2010.

R. Pueyo Centelles, S. Di Lucente, H. J. S. Dorren and N. Calabretta, “On the performance of a large-scale optical packet switch under realistic data center traffic,” (submitted).

A. Rohit, A. Albores-Mejia, J. Bolk, X. Leijtens, and K. Williams, “Multi-path Routing in a Monolithically Integrated 4x4 Broadcast and Select WDM Cross-connect,” Proceedings ECOC 2011, Geneva, Switzerland, 2011.

N. Kikuci, Y. Shibata, Y. Tomori, “Monolithically Integrated 64-channel WDM Channel Selector,” NTT R D 51, 11, 2003.

M. Matsuura, N. Kishi, and T. Miki, “Ultra-Wideband Wavelength Conversion over 300 nm by Cascaded SOA-Based Wavelength Converters,” PDP OFC 2006, Anaheim, USA, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical data center network topology (a) and a possible data center topology employing a large port-count optical packet switch at cluster level (b).

Fig. 2
Fig. 2

Modular OPS architecture with highly distributed control (a) and 1x4 optical module layout and functionalities (b).

Fig. 3
Fig. 3

Packet loss ratio (a), throughput (b) and latency (c) as function of the normalized average input load for systems with 4, 16, 64, 256, 1024 and 4096 input/output ports.

Fig. 4
Fig. 4

Experimental set-up (a), photograph of the integrated optical cross-connect module (b).

Fig. 5
Fig. 5

label bits of the four WDM channels (a), control signals driving the optical module (b), switched packets (c); optical spectra after static switching (d-g); BER curves (h); eye diagram after switching (i) and after wavelength conversion (l).

Metrics