Abstract

We introduce a Fourier analysis method to design temporal cloaks for hiding events in time domain. The cloaks are constructed with two linear time-invariant filters with different transfer functions, which can create a temporal gap and then closed it orderly, making any events occurring during the gap not detectable outside. We further reveal that even a no-gap temporal cloak can also hide events. All the analytical results are verified by fast Fourier transformation simulations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  6. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [CrossRef]
  7. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  8. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [CrossRef] [PubMed]
  9. Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  10. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
    [CrossRef] [PubMed]
  11. M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
    [CrossRef]
  12. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [CrossRef] [PubMed]
  13. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43(4), 773–793 (1996).
    [CrossRef]
  14. K. Wu and G. P. Wang, “General insight into the complementary medium-based camouflage devices from Fourier optics,” Opt. Lett. 35(13), 2242–2244 (2010).
    [CrossRef] [PubMed]
  15. K. Wu, Q. Cheng, and G. P. Wang, “Fourier optics theory for invisibility cloaks,” J. Opt. Soc. Am. B 28(6), 1467–1474 (2011).
    [CrossRef]
  16. K. Wu and G. P. Wang, “Hiding objects and creating illusions above a carpet filter using a Fourier optics approach,” Opt. Express 18(19), 19894–19901 (2010).
    [CrossRef] [PubMed]
  17. Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express 19(23), 23240–23248 (2011).
    [CrossRef] [PubMed]
  18. B. H. Kolner, “Space-Time Duality and the Theory of Temporal Imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  19. A. W. Lohmann and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31(29), 6212–6219 (1992).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  21. R. Bracewell, The Fourier Transform and Its Applications, (McGraw Hill, 2000).
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  23. J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
    [CrossRef]

2012 (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

2011 (4)

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

K. Wu, Q. Cheng, and G. P. Wang, “Fourier optics theory for invisibility cloaks,” J. Opt. Soc. Am. B 28(6), 1467–1474 (2011).
[CrossRef]

Q. Cheng, K. Wu, and G. P. Wang, “All dielectric macroscopic cloaks for hiding objects and creating illusions at visible frequencies,” Opt. Express 19(23), 23240–23248 (2011).
[CrossRef] [PubMed]

2010 (4)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

K. Wu and G. P. Wang, “General insight into the complementary medium-based camouflage devices from Fourier optics,” Opt. Lett. 35(13), 2242–2244 (2010).
[CrossRef] [PubMed]

K. Wu and G. P. Wang, “Hiding objects and creating illusions above a carpet filter using a Fourier optics approach,” Opt. Express 18(19), 19894–19901 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1996 (1)

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43(4), 773–793 (1996).
[CrossRef]

1994 (1)

B. H. Kolner, “Space-Time Duality and the Theory of Temporal Imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

1992 (1)

1965 (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Boardman, A.

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Cheng, Q.

Cooley, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Favaro, A.

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kinsler, P.

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

Kolner, B. H.

B. H. Kolner, “Space-Time Duality and the Theory of Temporal Imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Lohmann, A. W.

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

McCall, M. W.

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

Mendlovic, D.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ng, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43(4), 773–793 (1996).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Tukey, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wang, G. P.

Ward, A. J.

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43(4), 773–793 (1996).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Wu, K.

Xiao, J. J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, Z.-Q.

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-Time Duality and the Theory of Temporal Imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

J. Mod. Opt. (1)

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43(4), 773–793 (1996).
[CrossRef]

J. Opt. (1)

M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editors,” J. Opt. 13(2), 024003 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Math. Comput. (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Nat. Mater. (2)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Nature (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic Invisibility Cloak for Visible Light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Science (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).

R. Bracewell, The Fourier Transform and Its Applications, (McGraw Hill, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of temporal filters consisted of a pair of gratings, lenses and mirrors.

Fig. 2
Fig. 2

Time-dependent complex amplitude distributions of (a) an incident event, (b) an interferential event occurs during the temporal gap, and the output signal as the cloak is (c) off and (d) on. Time-dependent complex amplitude distributions of (e) an interferential event occurs during the edge of temporal gap and (f) corresponding output signal.

Fig. 3
Fig. 3

Scheme of the dispersion curves of media (a) for creating interferential events (left) and constructing conjugated temporal cloaks (right). Time-dependent complex amplitude distributions of (b) an interferential event, (c) mixed output signal of the incident event and interferential event, (d) conjugated temporal filter, and (e) output signal after filter is implemented for compensating for the interferential event, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u(t)= 1 2π + U(μ)exp(i2πμt) dμ= F 1 [U(μ)]
U(μ)= + u(t)exp(i2πμt) dt=F[u(t)]
H 1 (μ)={ exp(i2πμΔt),t> t 0 exp(+i2πμΔt),t< t 0
U'(μ)=U(μ) H 1 (μ)={ U(μ)exp(i2πμΔt), t> t 0 U(μ)exp(+i2πμΔt), t< t 0
u'(t)={ u(tΔt),t> t 0 +Δt 0, t 0 Δt<t< t 0 +Δt u(t+Δt),t< t 0 Δt
H 2 (μ)={ exp(+i2πμΔt),t> t 0 exp(i2πμΔt),t< t 0
U out (μ)=U'(μ) H 2 (μ)=U(μ) H 1 (μ) H 2 (μ)=CU(μ)
u out (t)= F 1 [ U out (μ)]=Cu(t)

Metrics