Abstract

We demonstrate temporal imaging for the measurement and characterization of optical arbitrary waveforms and events. The system measures single-shot 200 ps frames at a rate of 104 MHz, where each frame is time magnified by a factor of −42.4x. Impulse response tests show that the system enables 783 fs resolution when placed at the front end of a 20 GHz oscilloscope. Modulated pulse trains characterize the system’s impulse response, jitter, and frame-to-frame variation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004).
    [CrossRef]
  2. S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
    [CrossRef] [PubMed]
  3. L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
    [CrossRef]
  5. N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
    [CrossRef]
  6. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
    [CrossRef]
  7. R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic, Boston, Mass., 2000).
  8. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999).
    [CrossRef]
  9. P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).
  10. W. J. Caputi, “Stretch: a time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971).
    [CrossRef]
  11. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
    [CrossRef]
  12. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
    [CrossRef]
  13. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000).
    [CrossRef]
  14. C. V. Bennett, “Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope,” U.S. Patent No. 7,738,111.
  15. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999).
    [CrossRef] [PubMed]
  16. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “Guided-wave temporal imaging based ultrafast recorders,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2007), paper CFF1.
  17. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “640 GHz real-time recording using temporal imaging,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2008), paper CTuA6.
  18. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008).
    [CrossRef] [PubMed]
  19. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
    [CrossRef] [PubMed]
  20. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010).
    [CrossRef] [PubMed]
  21. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
    [CrossRef]
  22. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  23. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
    [CrossRef]
  24. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003).
    [CrossRef]
  25. M. H. Asghari, Y. Park, and J. Azaña, “Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry,” Opt. Express18(16), 16526–16538 (2010).
    [CrossRef] [PubMed]
  26. R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
    [CrossRef]
  27. M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012).
    [CrossRef]
  28. D. H. Broaddus, M. A. Foster, O. Kuzucu, K. W. Koch, and A. L. Gaeta, “Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. (CLEO/QELS), (OSA, 2010), paper CMK6.
  29. R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “3.5-THz wide, 175 mode optical comb source,” in Optical Fiber Communication and the National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2007), paper OWJ3.
  30. S. D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 microm,” Opt. Lett.29(17), 2070–2072 (2004).
    [CrossRef] [PubMed]
  31. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
    [CrossRef]

2012 (4)

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012).
[CrossRef]

2011 (1)

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
[CrossRef]

2010 (3)

2009 (1)

2008 (2)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

2004 (2)

2003 (1)

2000 (2)

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000).
[CrossRef]

1999 (3)

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999).
[CrossRef]

1997 (1)

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

1994 (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

1971 (1)

W. J. Caputi, “Stretch: a time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971).
[CrossRef]

1968 (1)

P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).

Akbulut, M.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Asghari, M. H.

M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012).
[CrossRef]

M. H. Asghari, Y. Park, and J. Azaña, “Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry,” Opt. Express18(16), 16526–16538 (2010).
[CrossRef] [PubMed]

Azaña, J.

M. H. Asghari, Y. Park, and J. Azaña, “Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry,” Opt. Express18(16), 16526–16538 (2010).
[CrossRef] [PubMed]

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

Baker, K. L.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Bennett, C. V.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999).
[CrossRef] [PubMed]

Bhooplapur, S.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Bienvenu, G.

P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Bonnet, L.

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

Broaddus, D. H.

Caputi, W. J.

W. J. Caputi, “Stretch: a time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971).
[CrossRef]

Celeste, J. R.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Cerjan, C.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Chen, L. R.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

Cole, M. J.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Davila-Rodriguez, J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Delfyett, P. J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Durkin, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

Fejer, M. M.

Fontaine, N. K.

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Geisler, D. J.

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

Geraghty, D. F.

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Han, Y.

Haynes, S.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Hernandez, V. J.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Hoghooghi, N.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Hsing, W. W.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999).
[CrossRef]

Ibsen, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

Jalali, B.

M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012).
[CrossRef]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003).
[CrossRef]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Koch, K. W.

Kolner, B. H.

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999).
[CrossRef] [PubMed]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

Kuzucu, O.

Lacaille, G. A.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Laming, R. I.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

Lipson, M.

London, R. A.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Lowry, M. E.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004).
[CrossRef]

Moran, B.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004).
[CrossRef]

Muriel, M. A.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

Ozdur, I.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

Parameswaran, K. R.

Park, Y.

Pierzchala, T.

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

Piotrzkowski, K.

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

Rodeghiero, P.

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

Salem, R.

Scott, R. P.

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
[CrossRef]

Smith, P. W. E.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

Steele, P. T.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Stewart, R. E.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Tournois, P.

P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).

Turner, A. C.

Turner-Foster, A. C.

Vernet, J. L.

P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).

Vernon, S. P.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

von Wittenau, A. S.

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999).
[CrossRef]

Weiner, A. M.

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004).
[CrossRef]

Yang, S. D.

Yoo, S. J. B.

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
[CrossRef]

Acta Phys. Pol. B (1)

L. Bonnet, T. Pierzchala, K. Piotrzkowski, and P. Rodeghiero, “GASTOF: ultra-fast TOF forward detector for exclusive processes at the LHC,” Acta Phys. Pol. B38, 477–482 (2007).

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

C. R. Acad. Sci. (1)

P. Tournois, J. L. Vernet, and G. Bienvenu, “Sur l'analogie optique de certains montages électroniques: Formation d'images temporelles de signaux électriques,” C. R. Acad. Sci.267, 375–378 (1968).

Electron. Lett. (2)

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett.35(25), 2223–2224 (1999).
[CrossRef]

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997).
[CrossRef]

IEEE J. Quantum Electron. (4)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part I: system configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - part II: system performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35(4), 501–509 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced ultrafast technologies based on optical frequency combs,” IEEE J. Sel. Top. Quantum Electron.18(1), 258–274 (2012).
[CrossRef]

IEEE Photon. J. (2)

R. P. Scott, N. K. Fontaine, D. J. Geisler, and S. J. B. Yoo, “Frequency-to-time-assisted interferometry for full-field optical waveform measurements with picosecond resolution and microsecond record lengths,” IEEE Photon. J.4(3), 748–758 (2012).
[CrossRef]

M. H. Asghari and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS),” IEEE Photon. J.4(5), 1693–1701 (2012).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

W. J. Caputi, “Stretch: a time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Nucl. Fusion (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion44(12), S228–S238 (2004).
[CrossRef]

Opt. Commun. (1)

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun.284(15), 3693–3705 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

S. P. Vernon, M. E. Lowry, K. L. Baker, C. V. Bennett, J. R. Celeste, C. Cerjan, S. Haynes, V. J. Hernandez, W. W. Hsing, G. A. Lacaille, R. A. London, B. Moran, A. S. von Wittenau, P. T. Steele, and R. E. Stewart, “X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection,” Rev. Sci. Instrum.83(10), 10D307 (2012).
[CrossRef] [PubMed]

Other (6)

R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic, Boston, Mass., 2000).

C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “Guided-wave temporal imaging based ultrafast recorders,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2007), paper CFF1.

C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, “640 GHz real-time recording using temporal imaging,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. and Photonic Applications Systems Tech. (CLEO/QELS and PhAST), (OSA, 2008), paper CTuA6.

C. V. Bennett, “Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope,” U.S. Patent No. 7,738,111.

D. H. Broaddus, M. A. Foster, O. Kuzucu, K. W. Koch, and A. L. Gaeta, “Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach,” in Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. (CLEO/QELS), (OSA, 2010), paper CMK6.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “3.5-THz wide, 175 mode optical comb source,” in Optical Fiber Communication and the National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2007), paper OWJ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A-PPLN-based temporal imaging system with (b) pump spectrum and (c) A-PPLN waveguide SHG transfer function.

Fig. 2
Fig. 2

Characterization of temporal imaging system: (a) observed time shifts at the output in response to adjustments made at the input, revealing a time magnification of M = −42.4; (b) system response to a 506 fs impulse, as measured with inset SHG FROG; (c) measurement of a three pulse packet on a 20 GHz oscilloscope without temporal imaging (unmagnified) and with temporal imaging (magnified).

Fig. 3
Fig. 3

Comparison of pulse packets containing data-modulated pulses before and after temporal imaging as measured from a 20 GHz real-time scope: (a) non-magnified input with (b) close-up of individual frames versus (c) close-up of time magnified output frames from (d) a single-shot 2 μs recording containing 206 total frames and resolving the individual subpicosecond pulses. The modulated data bit within the frames is indicated at the bottom of (b) and (c).

Fig. 4
Fig. 4

Pulse-by-pulse analyses of the 206 frames in Fig. 3(d): (a-c) strict overlap of the frames, revealing frame jitter and (d-f) amplitude and width variation obtained by removing jitter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 ϕ 1 " + 1 ϕ 2 " = 1 ϕ f "

Metrics