L. Mokhtarpour, G. H. Akter, and S. A. Ponomarenko, “Partially coherent self-similar pulses in resonant linear absorbers,” Opt. Express 20, 17816–17822 (2012).

[CrossRef]
[PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]
[PubMed]

L. Mokhtarpour and S. A. Ponomarenko, “Complex area correlation theorem for statistical pulses in coherent linear absorbers,” Opt. Lett. 37, 3498–3500 (2012).

[CrossRef]
[PubMed]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29, 2154–2158 (2012).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]
[PubMed]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011).

[CrossRef]
[PubMed]

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24, 1441–1450 (2007).

[CrossRef]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]
[PubMed]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007).

[CrossRef]
[PubMed]

A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24, 1441–1450 (2007).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products7th ed. (Academic Press, 2007).

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]
[PubMed]

Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29, 2154–2158 (2012).

[CrossRef]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]
[PubMed]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011).

[CrossRef]
[PubMed]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24, 1441–1450 (2007).

[CrossRef]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007).

[CrossRef]
[PubMed]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products7th ed. (Academic Press, 2007).

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007).

[CrossRef]
[PubMed]

A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24, 1441–1450 (2007).

[CrossRef]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007–5012 (2006).

[CrossRef]
[PubMed]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007–5012 (2006).

[CrossRef]
[PubMed]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003).

[CrossRef]

Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003).

[CrossRef]

H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255, 12–22 (2005).

[CrossRef]

P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002).

[CrossRef]

P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007–5012 (2006).

[CrossRef]
[PubMed]

A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007).

[CrossRef]
[PubMed]

H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010).

[CrossRef]
[PubMed]

L. Mokhtarpour, G. H. Akter, and S. A. Ponomarenko, “Partially coherent self-similar pulses in resonant linear absorbers,” Opt. Express 20, 17816–17822 (2012).

[CrossRef]
[PubMed]

Z. Tong and O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37, 3240–3242 (2012).

[CrossRef]
[PubMed]

L. Mokhtarpour and S. A. Ponomarenko, “Complex area correlation theorem for statistical pulses in coherent linear absorbers,” Opt. Lett. 37, 3498–3500 (2012).

[CrossRef]
[PubMed]

J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005).

[CrossRef]
[PubMed]

C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011).

[CrossRef]
[PubMed]

H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011).

[CrossRef]
[PubMed]

F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32, 3531–3533 (2007).

[CrossRef]
[PubMed]

V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007).

[CrossRef]
[PubMed]

K. Saastamoinen, J. Turunen, P. Vahimaa, and A. T. Friberg, “Spectrally partially coherent propagation-invariant fields,” Phys. Rev. A 80, 053804 (2009).

[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products7th ed. (Academic Press, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).