Abstract

A BOTDA with the capacity of break interrogation is proposed and demonstrated experimentally. In our configuration, coherent detection and double sideband probe method are employed to enhance the signal-to-noise ratio (SNR) and to effectively reduce nonlocal effects, respectively. Without amplification, a 72 km sensing range with 5-meter resolution and an estimated temperature uncertainty of 1.8 °C are obtained. Benefiting from the flexible optical configuration, this sensor system has the capacity of break interrogation as a coherent optical time domain reflectometry (COTDR) if there is a break in the fiber under test (FUT). The sensor achieves a dynamic range of 36 dB with a 100 m spatial resolution, which offers an excellent solution for the requisite of two-end-access in BOTDA, and significantly enhances the robustness of the sensing system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
    [CrossRef] [PubMed]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
    [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993).
    [CrossRef] [PubMed]
  4. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  5. S. B. Cho, J. J. Lee, and I. B. Kwon, “Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor,” Opt. Express12(18), 4339–4346 (2004).
    [CrossRef] [PubMed]
  6. V. P. Kalosha, E. A. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express14(6), 2071–2078 (2006).
    [CrossRef] [PubMed]
  7. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
    [CrossRef]
  8. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
    [CrossRef]
  9. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  10. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
    [CrossRef]
  11. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
    [CrossRef]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  13. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
    [CrossRef] [PubMed]
  14. S. Martín-Lopez, M. Alcón-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  15. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
    [CrossRef]
  16. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  17. Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
    [CrossRef]
  18. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  19. J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
    [CrossRef]
  20. H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
    [CrossRef]

2012

2011

2010

2009

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
[CrossRef]

2008

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

2006

2005

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

2004

1995

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

1993

1992

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

1987

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Alcón-Camas, M.

Ania-Castañon, J. D.

Ania-Castañón, J. D.

Bao, X.

Bernini, R.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Bolognini, G.

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Brown, A. W.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

Carrasco-Sanz, A.

Chaube, P.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

Chen, L.

Cho, S. B.

Colpitts, B. G.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

Corredera, P.

Cui, Q.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Di Pasquale, F.

Dong, Y.

Epworth, R. E.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Furukawa, S.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

González-Herraez, M.

González-Herráez, M.

Herr, D.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Izumita, H.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

Jackson, D. A.

Jagannathan, D.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

Kalosha, V. P.

King, J. P.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Kwon, I. B.

Lee, J. J.

Lin, A.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Loayssa, A.

Martín-Lopez, S.

Martín-López, S.

Minardo, A.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Pamukcu, S.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Pervizpour, M.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Ponomarev, E. A.

Richards, K.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Rodríguez, F.

Rodríguez-Barrios, F.

Sagues, M.

Sankawa, I.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Smith, D. F.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Thévenaz, L.

Timson, P.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Toulouse, J.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Webb, D. J.

Wright, S.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

Xiao, W.

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

Zeni, L.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Zornoza, A.

IEEE Photon. Technol. Lett.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992).
[CrossRef]

IEEE Sens. J.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009).
[CrossRef]

Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011).
[CrossRef]

J. Lightwave Technol.

J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987).
[CrossRef]

F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
[CrossRef]

A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Meas. Sci. Technol.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors (Basel)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The experiment setup of BOTDA with break interrogation based on coherent detection. PMC: polarization-maintaining coupler, EOM: electro-optic modulator, PS: polarization scrambler, EDFA: Erbium-doped fiber amplifier, ISO: optical isolator FUT: fiber under test, OLO: optical local oscillator, ESA: electrical spectrum analyzer, AOM: acousto-optic modulator, PD: photodetector.

Fig. 2
Fig. 2

Energy transfer mechanism between pump and probe light (a) and the frequencies of beat signals (b).

Fig. 3
Fig. 3

The BOTDA trace at f = 10.875GHz (a) and the obtained BGS at 10km, 54km, 72.50km (b).

Fig. 4
Fig. 4

The measured Brillouin frequency shift versus the fiber length.

Fig. 5
Fig. 5

The three-dimensional BGS (a) at the range of 60-72.5 km and the BFS versus distance near the end of FUT(b).

Fig. 6
Fig. 6

COTDR measurement result for the links of 72 km with 1μs pulse, corresponding to 100m spatial resolution.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i det (t)=2R P L P p (1+ g SBS ( v s ,z)) 2 ×cos(2π f IF t+Δϕ)
f IF =f+80MHz
f IF =f80MHz

Metrics