Abstract

We consider the propagation of powerful laser radiation in an anisotropic medium with natural birefringence and cubic nonlinearity. By the example of a quarter-wave plate, we show theoretically and experimentally that, under the simultaneous influence of linear birefringence and nonlinearity, the accuracy of polarization transformation decreases in proportion to squared В-integral.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
    [CrossRef]
  2. S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002).
    [CrossRef]
  3. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
    [CrossRef] [PubMed]
  4. B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001).
    [CrossRef] [PubMed]
  5. A. Macchi, “A femtosecond neutron source,” Appl. Phys. B82(3), 337–340 (2006).
    [CrossRef]
  6. X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
    [CrossRef] [PubMed]
  7. D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).
  8. S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
    [CrossRef]
  9. Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).
  10. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
    [CrossRef]
  11. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).
  12. D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977).
    [CrossRef]
  13. M. S. Kuzmina, M. A. Martyanov, A. K. Poteomkin, E. A. Khazanov, and A. A. Shaykin, “Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express19(22), 21977–21988 (2011).
    [CrossRef] [PubMed]
  14. R. J. Pressley, Handbook of Lasers With selected Data on Optical Technology (Chemical Rubber Co, Cleveland, 1979).
  15. R. L. Suthrland, Handbook of nonlinear optics, Marcel Dekker (New York, 2003).
  16. H. R. Phillip, Handbook of Optical Constants of Solids (Academic Press, 1985).
  17. S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, Optical Materials for Infrared Instrumentation (IRIA-University of Michigan, Report #2389–11-S, 1959).
  18. A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
    [CrossRef]
  19. N. G. Bondarenko, I. V. Eremina, and A. I. Makarov, “Measurement of nonlinear susceptibility tensor χijkl for DKDP crystals,” in Proceedings of the Five All-Union Conference on Laser Optics (Gosudarstvenny Optichesky Institut, Leningrad, 1987), pp. 37–40.

2011

2008

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

2006

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

A. Macchi, “A femtosecond neutron source,” Appl. Phys. B82(3), 337–340 (2006).
[CrossRef]

2003

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

2002

S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002).
[CrossRef]

2001

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001).
[CrossRef] [PubMed]

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

1982

S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
[CrossRef]

1977

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977).
[CrossRef]

1970

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).

1966

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).

1964

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
[CrossRef]

Auric, D.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977).
[CrossRef]

Babin, A. A.

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

Berkhoer, A. L.

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).

Borghesi, M.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Brown, C.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Bulanov, S. V.

S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002).
[CrossRef]

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Campbell, D. H.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Campbell, E. M.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Chen, J. E.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Cowan, T. E.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Fang, J. X.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Fountain, W.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Galimberti, M.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Gizzi, L. A.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Guo, Z. Y.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Haines, M. G.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Hatchett, S. P.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Jeong, Y. U.

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

Johnson, J.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Key, M. H.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Khazanov, E. A.

Khoroshkov, V. S.

S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002).
[CrossRef]

Kiselev, A. M.

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

Kryzhanovskii, V. I.

S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
[CrossRef]

Kuzmina, M. S.

Kwon, D.-H.

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

Labadens, A.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977).
[CrossRef]

Lee, K.

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

Lin, C.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Liu, B. C.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Lu, Y. R.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Macchi, A.

A. Macchi, “A femtosecond neutron source,” Appl. Phys. B82(3), 337–340 (2006).
[CrossRef]

Mackinnon, A. J.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
[CrossRef]

Martyanov, M. A.

Park, S. H.

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

Patel, P.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Pegoraro, F.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Pennington, D. M.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Perry, M. D.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Poteomkin, A. K.

Powell, H.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Raizer, Y. P.

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).

Roth, M.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Ruhl, H.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
[CrossRef]

Schiavi, A.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Sergeev, A. M.

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

Shaykin, A. A.

Shen, B.

B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001).
[CrossRef] [PubMed]

Sheng, Z. M.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Snavely, R. A.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Stepanov, A. N.

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
[CrossRef]

Vlasov, S. N.

S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
[CrossRef]

Wilks, S. C.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Willi, O.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Xu, Zh.

B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001).
[CrossRef] [PubMed]

Yan, X. Q.

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

Yashin, V. E.

S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
[CrossRef]

Yasuike, K.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

Zakharov, V. E.

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).

Zel'dovich, Y. B.

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).

Appl. Phys. B

A. Macchi, “A femtosecond neutron source,” Appl. Phys. B82(3), 337–340 (2006).
[CrossRef]

J. Korean Phys. Soc.

D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).

JETP Lett.

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).

Opt. Commun.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977).
[CrossRef]

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001).
[CrossRef] [PubMed]

X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008).
[CrossRef] [PubMed]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964).
[CrossRef]

Plasma Phys. Rep.

S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002).
[CrossRef]

Quantum Electron.

A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001).
[CrossRef]

Rev. Sci. Instrum.

M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003).
[CrossRef]

Sov. J. Quantum Electron.

S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982).
[CrossRef]

Sov. Phys. JETP

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).

Other

N. G. Bondarenko, I. V. Eremina, and A. I. Makarov, “Measurement of nonlinear susceptibility tensor χijkl for DKDP crystals,” in Proceedings of the Five All-Union Conference on Laser Optics (Gosudarstvenny Optichesky Institut, Leningrad, 1987), pp. 37–40.

R. J. Pressley, Handbook of Lasers With selected Data on Optical Technology (Chemical Rubber Co, Cleveland, 1979).

R. L. Suthrland, Handbook of nonlinear optics, Marcel Dekker (New York, 2003).

H. R. Phillip, Handbook of Optical Constants of Solids (Academic Press, 1985).

S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, Optical Materials for Infrared Instrumentation (IRIA-University of Michigan, Report #2389–11-S, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Arrangement of optical axes of the components of zero-order wave plate and relative position of electric field vector in the incident wave and principal axes of the quarter-wave plate at linear-to-circular polarization transformation.

Fig. 2
Fig. 2

Schematic of the setup for measuring accuracy of polarization transformation by means of a quarter-wave plate for nonzero B: 1 – mirror with reflection coefficient R = 99%, 2 – spherical mirror with focal distance f = 125 cm, 3 – spherical mirror with focal distance f = −50 cm, 4, 6 – zero-order quarter-wave plates 0.18 cm thick, 5 – glass wedge, 7 – calcite wedge, 8 – lens with focal distance f = 13.5 cm, 9 – CCD-camera. The dashed and solid lines correspond to the depolarized and polarized radiation components, respectively (а). Two-dimensional intensity distributions of the polarized (b, d) and depolarized (c, e) radiation components at В = 0 (b, c) and В > 1 (d, e).

Fig. 3
Fig. 3

Experimental and theoretical curves for Γ and ellipticity Σ versus intensity and В-integral at the output of zero-order λ/4 plate (а); function Γ(χxxzz / χxxxx) at I = 700 GW/cm2 for different values of Γ(В = 0) = 0%, 0.01% and 0.1% (b).

Fig. 4
Fig. 4

Experimental and theoretical curves for Γ versus intensity and В-integral at the output of zero-order λ/4 plate (а); function Γ(χyyzz / χyyyy, χyyyz / χyyyy) at I = 700 GW/cm2 for depolarization Γ(В = 0) = 0.1%: the solid (dashed) level curve corresponds to values of parameters χyyzz, χyyyz at which experiment and theory are in good agreement for right(left)-handed polarization (b).

Fig. 5
Fig. 5

Spectra corresponding to pulse shape А0(t) and А(t), depolarization degree Γ0(λ) specified by dispersive characteristics of crystalline quartz (see secondary axis).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε ^ =[ ε 11 0 0 0 ε 11 0 0 0 ε 22 ] g ^ =[ g 11 0 0 0 g 11 0 0 0 g 22 ].
D = ε ^ E +i[ g ^ k ; E ],( D x D y D z )=( ε 11 ik g 11 0 ik g 11 ε 11 0 0 0 ε 22 )( E x E y E z ),
χ zzzz , χ xxyy = χ xyxy = χ xyyx = χ yyxx = χ yxyx = χ yxxy ; χ xxzz = χ xzxz = χ xzzx = χ zzxx = χ zxzx = χ zxxz = χ yyzz = χ yzyz = χ yzzy = χ zzyy = χ zyzy = χ zyyz ; χ yyyz = χ yyzy = χ yzyy = χ zyyy = χ xyxz = χ xxzy = χ xzxy = χ xxyz = χ xyzx = χ xzyx = χ yxxz = χ yxzx = χ yzxx = χ zyxx = χ zxyx = χ zxxy ; ( χ xxxx = χ yyyy = χ xxyy + χ xyxy + χ xyyx ).
B= 2π λ γ NL 0 L I(z) dz.
E = e x E x e ik n x y + e z E z e ik n z y , E = e y E y e ik n y x + e z E z e ik n z x ,
{ E x y = i6πk n x ( χ xxxx | E x | 2 E x + χ xxzz ( 2| E z | 2 E x + E z 2 E x * ) ) i 2 δ y E x , E z y = i6πk n z ( χ zzzz | E z | 2 E z + χ xxzz ( 2| E x | 2 E z + E x 2 E z * ) )+ i 2 δ y E z .
{ E y x = i6πk n y [ χ yyyy | E y | 2 E y + χ yyzz ( 2| E z | 2 E y + E z 2 E y * )+ χ yyyz ( 2| E z | 2 E y + E z 2 E y * ) ] i 2 δ x E y , E z x = i6πk n z [ χ zzzz | E z | 2 E z + χ yyzz ( 2| E y | 2 E z + E y 2 E z * )+ χ yyyz | E y | 2 E y ]+ i 2 δ x E z .
Γ= | E out ( B ) E out * ( B=0 ) | 2 | E out ( B ) | 2 | E out ( B=0 ) | 2 .
Σ= 4 π arctan( | E | | E + | )1,
Σ( Γ )= 4 π arctan( Γ 1Γ )1.

Metrics