Abstract

Drawing inspiration from radio-frequency technologies, we propose a realization of nano-scale optical dielectric resonator antennas (DRAs) functioning in their fundamental mode. These DRAs operate via displacement current in a low-loss high-permittivity dielectric, resulting in reduced energy dissipation in the resonators. The designed nonuniform planar DRA array on a metallic plane imparts a sequence of phase shifts across the wavefront to create beam deflection off the direction of specular reflection. The realized array clearly demonstrates beam deflection at 633 nm. Despite the loss introduced by field interaction with the metal substrate, the proposed low-loss resonator concept is a first step towards nanoantennas with enhanced efficiency. The compact planar structure and technologically relevant materials promise monolithic circuit integration of DRAs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
    [CrossRef]
  2. I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
    [CrossRef]
  3. C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
    [CrossRef]
  4. C. Fumeaux, J. Alda, and G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett.24, 1629–1631 (1999).
    [CrossRef]
  5. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
    [CrossRef] [PubMed]
  6. M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics2, 270–272 (2008).
    [CrossRef]
  7. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
    [CrossRef]
  8. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
    [CrossRef]
  9. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
    [CrossRef] [PubMed]
  10. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007).
    [CrossRef] [PubMed]
  11. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
    [CrossRef] [PubMed]
  12. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
    [CrossRef] [PubMed]
  13. J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
    [CrossRef]
  14. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
    [CrossRef]
  15. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  16. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
    [CrossRef]
  17. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  19. A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010).
    [CrossRef]
  20. S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
    [CrossRef]
  21. Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972).
    [CrossRef]
  23. K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, U.K., 2003).
  24. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
    [CrossRef] [PubMed]
  25. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
    [CrossRef] [PubMed]
  26. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  27. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
    [CrossRef]
  28. J. Huang and J. A. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2007).
    [CrossRef]
  29. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett.28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  30. MicroChem Corporation, “Datasheet for Poly(methyl methacrylate) (PMMA),”.
  31. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  32. A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008).
    [CrossRef]

2012 (3)

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
[CrossRef] [PubMed]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

2011 (4)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

2010 (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
[CrossRef]

A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010).
[CrossRef]

2009 (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
[CrossRef]

2008 (4)

M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics2, 270–272 (2008).
[CrossRef]

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008).
[CrossRef]

2007 (3)

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

1998 (1)

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

1994 (1)

I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

1991 (1)

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
[CrossRef]

1983 (1)

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Alda, J.

Almpanis, G.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

Benedickter, H.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

Berkovitch, N.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
[CrossRef]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Boreman, G.

Boreman, G. D.

Brongersma, M. L.

M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics2, 270–272 (2008).
[CrossRef]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972).
[CrossRef]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007).
[CrossRef] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
[CrossRef]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Encinar, J. A.

J. Huang and J. A. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2007).
[CrossRef]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
[CrossRef]

A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Fumeaux, C.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

C. Fumeaux, J. Alda, and G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett.24, 1629–1631 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Ginn, J.

Ginzburg, P.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

Grossman, E. N.

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
[CrossRef]

Huang, J.

J. Huang and J. A. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2007).
[CrossRef]

Ittipiboon, A.

A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
[CrossRef]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Kim, P. S.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Kneubühl, F.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
[CrossRef]

Lai, Q.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

Lail, B.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Lee, G.

Leung, K. W.

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, U.K., 2003).

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

Liu, Y.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Long, S.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
[CrossRef]

Luk, K. M.

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, U.K., 2003).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

McAllister, M.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
[CrossRef]

McDonald, D. G.

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007).
[CrossRef] [PubMed]

Oh, C. H.

Orenstein, M.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
[CrossRef] [PubMed]

Palomba, S.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Park, S.

Park, Y.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Petosa, A.

A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
[CrossRef]

Sauvageau, J. E.

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
[CrossRef]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Shen, L.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
[CrossRef]

Song, S. H.

Stockman, M. I.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Vahldieck, R.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Wilke, I.

I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

Yin, X.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Zentgraf, T.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Zhang, X.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Advances in Optics and Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009).
[CrossRef]

Appl. Phys. B (1)

I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983).
[CrossRef]

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008).
[CrossRef]

Infrared Phys. Technol. (1)

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998).
[CrossRef]

J. Phys. Condens. Matter (1)

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012).
[CrossRef] [PubMed]

Nano Lett. (2)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007).
[CrossRef] [PubMed]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011).
[CrossRef] [PubMed]

Nat. Photonics (5)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics2, 270–272 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B: Condens. Matter (3)

A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007).
[CrossRef] [PubMed]

Science (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012).
[CrossRef]

Other (5)

J. Huang and J. A. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2007).
[CrossRef]

MicroChem Corporation, “Datasheet for Poly(methyl methacrylate) (PMMA),”.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, U.K., 2003).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Supplementary Material (1)

» Media 1: AVI (18365 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Single optical DRA and its performance. (a) 3D rendered model of the cylindrical DRA on the silver substrate (not to scale). The cylinder has a diameter of 162 nm and a height of 50 nm. (b) Magnitude and phase of the magnetic field inside the resonator along the x axis. (c) Numerically resolved instantaneous field distribution following plane wave excitation. The electric field distribution is represented as vectors, and the magnetic field distribution as colormap. (d) Simulated radiation pattern for in-plane and out-of-plane polarizations. To compute those patterns, the DRA on a finite-size silver plane is excited by a vertical current probe at the periphery of the cylinder. The asymmetry of this source arrangement explains the imperfect symmetry of the patterns.

Fig. 2
Fig. 2

Numerically resolved magnitude and phase responses of DRAs at 633 nm. The responses vary as a function of the resonators diameter, for a fixed height of 50 nm. The unit cell size is 310 × 310 nm2. The simulation employed a periodic boundary condition to mimic the infinite uniform array, and the reference plane is the top surface of the metal plane. The circles indicate the selected cylindrical diameters for the nonuniform array.

Fig. 3
Fig. 3

Geometry of antenna array and scattered fields. (a) Schematic showing a partial view of an antenna array made of 6-cell sub-arrays with DRAs diameters of 66, 154, 170, 180, 193 and 242 nm and a unit-cell size of 310 nm (not to scale). (b) Scattered electric fields of the 6-cell sub-array for the TE-polarized wave, obtained from numerical simulation. The direction of the incident plane wave is perpendicular to the array, and the deflection angle θ equals 19.9° ( Media 1).

Fig. 4
Fig. 4

Schematic of the fabrication sequence for the optical dielectric resonator antenna arrays. (a) Pre-cleaned silicon substrate. (b) 200 nm silver thin film deposited by electron beam evaporation. (c) Electron beam resist (PMMA) spin-coated to attain ∼200 nm thickness. (d) PMMA resist patterned by electron beam direct writing in a field emission gun scanning electron microscope. (e) Dielectric thin film of TiO2 deposited to a thickness of 50 nm by electron beam evaporation. (f) Finally, the sacrificial PMMA layer is dissolved to attain TiO2 cylinders which are annealed in vacuum at 600°C for 2 h to attain crystalline material. (g) Scanning electron micrograph revealing a few subarrays.

Fig. 5
Fig. 5

Experiment Setup. The measurement system comprises a He-Ne CW laser at 633 nm, a microscope objective lens, and a CCD camera. The incident angle α is ∼30°, and the deflection angle θ is ∼20° from specular direction.

Fig. 6
Fig. 6

Beam reflection pattern. The beam reflection patterns obtained from antenna array theory calculation (a), linear camera detector (b), and CCD imaging (c). Angle of 0° denotes the direction of the specular reflection. The theoretical calculation in (a) is obtained by superimposing the phased contributions of the elements in the array (following antenna array theory [31]) with their progressive phase retrieved from the realized resonator diameters (Fig. 4(g) and Fig. 2(b)). The obtained re-radiation angular pattern is subsequently projected on a screen modelled as realized in the experiment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ = Δ ϕ λ 0 2 π a ,

Metrics