Abstract

We investigate simultaneously the temporal and optical and radio-frequency spectral properties of parametric frequency combs generated in silicon-nitride microresonators and observe that the system undergoes a transition to a mode-locked state. We demonstrate the generation of sub-200-fs pulses at a repetition rate of 99 GHz. Our calculations show that pulse generation in this system is consistent with soliton modelocking. Ultimately, such parametric devices offer the potential of producing ultra-short laser pulses from the visible to mid-infrared regime at repetition rates from GHz to THz.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
    [CrossRef] [PubMed]
  2. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
    [CrossRef]
  3. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
    [CrossRef]
  4. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).
  5. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
    [CrossRef]
  6. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
    [CrossRef] [PubMed]
  7. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode-locked fiber lasers using carbon nanotubes,” Opt. Express19, 6155–6163 (2011).
    [CrossRef] [PubMed]
  8. H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
    [CrossRef]
  9. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
    [CrossRef]
  10. J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
    [CrossRef]
  11. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
    [CrossRef] [PubMed]
  12. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express19, 16491–16497 (2011).
    [CrossRef] [PubMed]
  13. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
    [CrossRef]
  14. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
    [CrossRef]
  15. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
    [CrossRef] [PubMed]
  16. J. Davila-Rodriguez, I. Ozdur, C. Williams, and P. J. Delfyett, “A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon,” Opt. Lett.35, 4130–4132 (2010).
    [CrossRef] [PubMed]
  17. M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
    [CrossRef]
  18. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
    [CrossRef]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
    [CrossRef]
  20. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  21. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  22. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
    [CrossRef] [PubMed]
  23. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
    [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
    [CrossRef] [PubMed]
  25. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
    [CrossRef] [PubMed]
  26. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
    [CrossRef]
  27. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
    [CrossRef]
  28. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
    [CrossRef]
  29. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
    [CrossRef]
  30. T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.
  31. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
    [CrossRef] [PubMed]
  32. Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
    [CrossRef]
  33. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
    [CrossRef]
  34. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
    [CrossRef]

2012 (7)

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

2011 (10)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode-locked fiber lasers using carbon nanotubes,” Opt. Express19, 6155–6163 (2011).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express19, 16491–16497 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

2010 (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

J. Davila-Rodriguez, I. Ozdur, C. Williams, and P. J. Delfyett, “A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon,” Opt. Lett.35, 4130–4132 (2010).
[CrossRef] [PubMed]

2009 (3)

2007 (2)

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

2006 (2)

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

2000 (1)

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Akbulut, M.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Barbarin, Y.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Bellancourt, A.-R.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Benedict, J.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Bergquist, J. C.

Bize, S.

Brasch, V.

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Cardenas, J.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Coen, S.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

Davila-Rodriguez, J.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Delfyett, P. J.

Delfyett, P.J.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Diddams, S. A.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
[CrossRef]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Dudley, J. M.

Ebling, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Ehlers, A.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Emplit, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Foster, M. A.

Fujimoto, J. G.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Geraghty, D. F.

Gini, E.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Gorza, S.-P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Haelterman, M.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Hall, J. L.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Hoffmann, M.

Hoghooghi, N.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Hollberg, L.

Hollberg, L. W.

Holman, K. W.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Janke, C.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Johnson, A. R.

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

Jones, D. J.

Jones, R. J.

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Kartner, F. X.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Keller, U.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Kitching, J.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Kockaert, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

König, K.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Krestnikov, I. L.

Kundermann, S.

Kuzucu, O.

Le Harzic, R.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Lecomte, S.

Leo, F.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Levy, J. S.

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Liang, W.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Lipson, M.

Livshits, D. A.

Lorenser, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Ma, L.-S.

Maas, D. J. H. C.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Mandridis, D.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Martin, S.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Martinez, A.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Okawachi, Y.

Ozdur, I.

Ozharar, S.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

Pekarek, S.

Peng, J.-L.

Quinlan, F.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Riemann, I.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Robertsson, L.

Rudin, B.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Saha, K.

Salem, R.

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
[CrossRef] [PubMed]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Schröder, J.

Seidel, D.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Sieber, O. D.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Südmeyer, T.

Sylvestre, T.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
[CrossRef] [PubMed]

Unold, H. J.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Vanholsbeeck, F.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wen, Y. H.

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Williams, C.

Wittwer, V. J.

Xiao, S.

Yamashita, S.

Ye, J.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
[CrossRef]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Nat. Photonics (2)

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Nature Photon. (3)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Opt. Lett., (1)

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

Phys. Rev. A (3)

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

Science (3)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

Other (2)

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics