Abstract

We investigate simultaneously the temporal and optical and radio-frequency spectral properties of parametric frequency combs generated in silicon-nitride microresonators and observe that the system undergoes a transition to a mode-locked state. We demonstrate the generation of sub-200-fs pulses at a repetition rate of 99 GHz. Our calculations show that pulse generation in this system is consistent with soliton modelocking. Ultimately, such parametric devices offer the potential of producing ultra-short laser pulses from the visible to mid-infrared regime at repetition rates from GHz to THz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
    [CrossRef] [PubMed]
  2. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
    [CrossRef]
  3. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
    [CrossRef]
  4. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).
  5. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
    [CrossRef]
  6. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
    [CrossRef] [PubMed]
  7. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode-locked fiber lasers using carbon nanotubes,” Opt. Express19, 6155–6163 (2011).
    [CrossRef] [PubMed]
  8. H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
    [CrossRef]
  9. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
    [CrossRef]
  10. J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
    [CrossRef]
  11. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
    [CrossRef] [PubMed]
  12. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express19, 16491–16497 (2011).
    [CrossRef] [PubMed]
  13. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
    [CrossRef]
  14. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
    [CrossRef]
  15. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
    [CrossRef] [PubMed]
  16. J. Davila-Rodriguez, I. Ozdur, C. Williams, and P. J. Delfyett, “A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon,” Opt. Lett.35, 4130–4132 (2010).
    [CrossRef] [PubMed]
  17. M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
    [CrossRef]
  18. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
    [CrossRef]
  19. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
    [CrossRef]
  20. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  21. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  22. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
    [CrossRef] [PubMed]
  23. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
    [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
    [CrossRef] [PubMed]
  25. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
    [CrossRef] [PubMed]
  26. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
    [CrossRef]
  27. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
    [CrossRef]
  28. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
    [CrossRef]
  29. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
    [CrossRef]
  30. T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.
  31. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
    [CrossRef] [PubMed]
  32. Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
    [CrossRef]
  33. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
    [CrossRef]
  34. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
    [CrossRef]

2012 (7)

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

2011 (10)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively mode-locked fiber lasers using carbon nanotubes,” Opt. Express19, 6155–6163 (2011).
[CrossRef] [PubMed]

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19, 8108–8116 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express19, 16491–16497 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

2010 (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

J. Davila-Rodriguez, I. Ozdur, C. Williams, and P. J. Delfyett, “A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon,” Opt. Lett.35, 4130–4132 (2010).
[CrossRef] [PubMed]

2009 (3)

2007 (2)

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

2006 (2)

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

2000 (1)

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Akbulut, M.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Barbarin, Y.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Bellancourt, A.-R.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Benedict, J.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Bergquist, J. C.

Bize, S.

Brasch, V.

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Cardenas, J.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Coen, S.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3491 (2006).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

Davila-Rodriguez, J.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Delfyett, P. J.

Delfyett, P.J.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Diddams, S. A.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 GHz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009).
[CrossRef]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Dudley, J. M.

Ebling, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Ehlers, A.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Emplit, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Foster, M. A.

Fujimoto, J. G.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Geraghty, D. F.

Gini, E.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Gorza, S.-P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Haelterman, M.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Hall, J. L.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Hoffmann, M.

Hoghooghi, N.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Hollberg, L.

Hollberg, L. W.

Holman, K. W.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Janke, C.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Johnson, A. R.

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

Jones, D. J.

Jones, R. J.

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Kartner, F. X.

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

Keller, U.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Kitching, J.

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Kockaert, P.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

König, K.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Krestnikov, I. L.

Kundermann, S.

Kuzucu, O.

Le Harzic, R.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Lecomte, S.

Leo, F.

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Levy, J. S.

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100-GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Liang, W.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Lipson, M.

Livshits, D. A.

Lorenser, D.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Ma, L.-S.

Maas, D. J. H. C.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Mandridis, D.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Martin, S.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Martinez, A.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Okawachi, Y.

Ozdur, I.

Ozharar, S.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

Pekarek, S.

Peng, J.-L.

Quinlan, F.

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

Riemann, I.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Robertsson, L.

Rudin, B.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

Saha, K.

Salem, R.

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
[CrossRef] [PubMed]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Schröder, J.

Seidel, D.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Sieber, O. D.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Südmeyer, T.

Sylvestre, T.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17, 4324–4329 (2009).
[CrossRef] [PubMed]

Unold, H. J.

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

Vanholsbeeck, F.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wen, Y. H.

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Williams, C.

Wittwer, V. J.

Xiao, S.

Yamashita, S.

Ye, J.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical ber network,” J. Opt. Soc. Am. B20, 1459–1467 (2003).
[CrossRef]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98, 071103 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron.42, 838–847 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P.J. Delfyett, “A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ∼500-Hz comb linewidth,” IEEE Photon. Technol. Lett.22, 431–433 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102, 014701 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode locking of lasers,” J. Sel. Top. Quantum Electron.6, 1173–1185 (2000).
[CrossRef]

Nat. Photonics (2)

J. Benedict, J. G. Fujimoto, and F. X. Kartner, “Optical flywheels with attosecond jitter,” Nat. Photonics6, 97–100 (2012).
[CrossRef]

F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics4, 471–476 (2010).
[CrossRef]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Nature Photon. (3)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr frequency combs in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Opt. Lett., (1)

Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, and A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett.,37, 4892–4894 (2012).
[CrossRef]

Phys. Rev. A (3)

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr-frequency-comb formation,” Phys. Rev. A86, 013838 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys.75, 325 (2003).
[CrossRef]

Science (3)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293, 1286–1289 (2001).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science339, 555–559 (2011).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326, 681 (2009).
[CrossRef] [PubMed]

Other (2)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier Inc., 2006).

T. Herr, V. Brasch, M. L. Gorodetsky, and T. J. Kippenberg, “Soliton mode-locking in optical microresonators,” arXiv:1211.0733.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for temporal and spectral characterization of parametric frequency combs.

Fig. 2
Fig. 2

(a) A scanning electron micrograph of a silicon-nitride resonator of length 1.44 mm coupled to a bus waveguide. The free-spectral range (FSR) is 99 GHz. (b) Optical spectrum of 99-GHz FSR frequency comb. (c) Micrograph of a silicon-nitride microresonator resonator of radius 112-μm with an FSR of 225 GHz. (d) Optical spectrum of a 225-GHz FSR frequency comb.

Fig. 3
Fig. 3

(a) Filtered optical spectrum of a 99-GHz FSR frequency comb. The filter bandwidth is 25 nm. (b) Normalized autocorrelation trace of the pulse train obtained from the filtered comb. The pulse separation is 10.1 ps. (c) Zoomed-in view of a single pulse with a 147-fs FWHM pulse width. (d) Autocorrelation traces of pulses undergoing additional dispersive propagation through additional lengths of SMF. The observed broadening is consistent with that associated with coherent pulses.

Fig. 4
Fig. 4

(a) Filtered optical spectrum of a frequency comb with 225-GHz free spectral range. (b) Normalized autocorrelation trace of pulse train obtained from the filtered comb. The pulse separation is 4.44 ps and the FWHM pulsewidth is 205 fs.

Fig. 5
Fig. 5

(a) From top to bottom, pulse formation dynamics as the laser is tuned into resonance of the microresonator, thereby increasing the power coupled into the microresonator. (b) RF amplitude noise corresponding to each stage of pulse formation shown in column a to its left. (c) Optical spectrum of comb generation dynamics. Full comb is represented in blue, the filtered section of the comb used for pulse generation is shown in red.

Fig. 6
Fig. 6

(a) Single-shot characterization of temporal evolution (top to bottom) of pulses generated in a microresonator with 99-GHz FSR measured with an ultrafast temporal magnifier and a real-time oscilloscope. (b) Spectral evolution of the generated frequency comb as the pump is tuned into resonance and the power inside the microresonator increases.

Metrics