Abstract

We demonstrate index-coupled distributed-feedback diode lasers at 2.65 µm that are capable of tuning across strong absorption lines of HDO and other isotopologues of H2O. The lasers employ InGaAsSb/AlInGaAsSb multi-quantum-well structures grown by molecular beam epitaxy on GaSb, and single-mode emission is generated using laterally coupled second-order Bragg gratings etched alongside narrow ridge waveguides. We verify near-critical coupling of the gratings by analyzing the modal characteristics of lasers of different length. With an emission facet anti-reflection coating, 2-mm-long lasers exhibit a typical current threshold of 150 mA at 20 °C and are capable of emitting more than 25 mW in a single longitudinal mode, which is significantly higher than the output power reported for loss-coupled distributed-feedback lasers operating at similar wavelengths.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
    [CrossRef]
  2. D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
    [CrossRef] [PubMed]
  3. C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt.46(28), 6923–6935 (2007).
    [CrossRef] [PubMed]
  4. D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
    [CrossRef]
  5. S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
    [CrossRef]
  6. H. K. Choi and S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density,” Appl. Phys. Lett.61(10), 1154–1156 (1992).
    [CrossRef]
  7. D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
    [CrossRef]
  8. R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
    [CrossRef]
  9. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 µm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt.45(20), 4957–4965 (2006).
    [CrossRef] [PubMed]
  10. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
    [CrossRef]
  11. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
    [CrossRef]
  12. A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
    [CrossRef]
  13. M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
    [CrossRef]
  14. J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
    [CrossRef]
  15. D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
    [CrossRef]
  16. W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
    [CrossRef]
  17. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
    [CrossRef]
  18. W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
    [CrossRef]
  19. J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
    [CrossRef]

2012 (3)

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

2010 (1)

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

2009 (2)

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

2008 (1)

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

2002 (1)

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

2001 (1)

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

1999 (1)

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

1996 (1)

W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
[CrossRef]

1995 (1)

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

1992 (2)

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

H. K. Choi and S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density,” Appl. Phys. Lett.61(10), 1154–1156 (1992).
[CrossRef]

1975 (1)

W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Aers, G. C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Allen, N. T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Amann, M. C.

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

Anderson, J. G.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Bagheri, M.

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Barat, D.

Barrios, P. J.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Belenky, G. L.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Bezinger, A.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

Briggs, R. M.

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

Burnham, W. D.

W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Chan, W. K.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

Chapman, P. F.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Chen, J. C.

W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
[CrossRef]

Choi, H. K.

H. K. Choi and S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density,” Appl. Phys. Lett.61(10), 1154–1156 (1992).
[CrossRef]

Choi, W.-Y.

W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
[CrossRef]

Connolly, J. C.

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Demusz, J. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Dier, O.

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

Eglash, S. J.

H. K. Choi and S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density,” Appl. Phys. Lett.61(10), 1154–1156 (1992).
[CrossRef]

Engel, G. S.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Fonstad, C. G.

W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
[CrossRef]

Forouhar, S.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

Franz, K. J.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Frez, C.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

Garbuzov, D. Z.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Garnache, A.

Grau, M.

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

Greenberg, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Gupta, J. A.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Hanisco, T. F.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Helmer, B. A.

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

Hunspreger, R. G.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Keil, D.

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

Keo, S.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Keutsch, F. N.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Khalfin, V.

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Kim, J. G.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

Koeth, J.

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Kroll, J. H.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Ksendzov, A.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

Lang, R. J.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Lapointe, J.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Lapson, L.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Larsson, A.

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

Lauer, C.

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

Lee, H.

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Legg, M.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Lin, C.

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

Martin, R. D.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Martin, T.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Martinelli, R.

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

Martinelli, R. U.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

Moyer, E. J.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Mueller, G.

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

O’Brien, A.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

O’Brien, A. S.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Ouvrard, A.

Paul, J. B.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Pfister, L.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Poitras, D.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

Rivero, M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Romanini, D.

Rouillard, Y.

Salhi, A.

Sayres, D. S.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Scifres, D. R.

W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Seufert, J.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

Shterengas, L.

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

Smith, J. B.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

St Clair, J. M.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

St. Clair, J. M.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Storey, C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Streifer, W.

W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

Tarsitano, C. G.

Temkin, H.

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

Tiberio, R.

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Tuozzolo, C.

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Vicet, A.

Wagganer, E.

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

Waldron, P.

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

Webster, C. R.

Werner, R.

Witinski, M. F.

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

H. K. Choi and S. J. Eglash, “High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density,” Appl. Phys. Lett.61(10), 1154–1156 (1992).
[CrossRef]

M. Grau, C. Lin, O. Dier, C. Lauer, and M. C. Amann, “Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers,” Appl. Phys. Lett.87(24), 241104 (2005).
[CrossRef]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012).
[CrossRef]

J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, and W. K. Chan, “Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves,” Appl. Phys. Lett.81(17), 3146–3148 (2002).
[CrossRef]

Electron. Lett. (3)

A. Ksendzov, S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and M. Bagheri, “Linewidth measurement of high power diode laser at 2 µm for carbon dioxide detection,” Electron. Lett.48(9), 520–522 (2012).
[CrossRef]

S. Forouhar, A. Ksendzov, A. Larsson, and H. Temkin, “InGaAs/InGaAsP/InP strained-layer quantum well lasers at ~2 μm,” Electron. Lett.28(15), 1431–1432 (1992).
[CrossRef]

J. A. Gupta, A. Bezinger, P. J. Barrios, J. Lapointe, D. Poitras, and P. Waldron, “High-resolution methane spectroscopy using InGaAsSb/AlInGaAsSb laterally-coupled index-grating distributed feedback laser diode at 3.23um,” Electron. Lett.48(7), 396–397 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Streifer, W. D. Burnham, and D. R. Scifres, “Effect of external reflectors on longitudinal modes of distributed feedback lasers,” IEEE J. Quantum Electron.11(4), 154–161 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, “2.3-2.7 µm room temperature CW operation of InGaAsSb/A1GaAsSb broad waveguide SCH-QW diode lasers,” IEEE Photon. Technol. Lett.11(7), 794–796 (1999).
[CrossRef]

R. D. Martin, S. Forouhar, S. Keo, R. J. Lang, R. G. Hunspreger, R. Tiberio, and P. F. Chapman, “CW performance of an InGAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” IEEE Photon. Technol. Lett.7(3), 244–246 (1995).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4-µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972).
[CrossRef]

J. Electrochem. Soc. (1)

D. Keil, B. A. Helmer, G. Mueller, and E. Wagganer, “Oxide dual damascene trench etch profile control,” J. Electrochem. Soc.148(7), G383–G388 (2001).
[CrossRef]

J. Geophys. Res. (1)

D. S. Sayres, L. Pfister, T. F. Hanisco, E. J. Moyer, J. B. Smith, J. M. St. Clair, A. S. O’Brien, M. F. Witinski, M. Legg, and J. G. Anderson, “The influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere,” J. Geophys. Res.115, D00J20 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W.-Y. Choi, J. C. Chen, and C. G. Fonstad, “Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4654–4659 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

D. S. Sayres, E. J. Moyer, T. F. Hanisco, J. M. St Clair, F. N. Keutsch, A. O’Brien, N. T. Allen, L. Lapson, J. N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G. S. Engel, J. H. Kroll, J. B. Paul, and J. G. Anderson, “A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere,” Rev. Sci. Instrum.80(4), 044102 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the LC-DFB laser structure without the SiNx barrier layer and electroplated Au contact. (b) Calculated electric field intensity for the fundamental TE00 mode supported by the fabricated waveguide geometry. (c) Scanning electron micrograph of a fabricated laser ridge. (d) Cross section of the laterally coupled gratings, with a high- magnification view of the InGaAsSb/AlInGaAsSb multi-quantum-well active region.

Fig. 2
Fig. 2

(a) CW light-current-voltage (LIV) characteristics of a 2-mm-long LC-DFB laser at different heat-sink temperatures. The dip in the output power at 10 °C is due to the laser tuning across an ambient H2O absorption line at 3779.5 cm−1. (b) Comparison of the efficiency and LIV characteristics (inset) of 1- and 2-mm-long LC-DFB lasers with the same facet coatings.

Fig. 3
Fig. 3

(a) Emission spectra from a 2-mm-long LC-DFB laser measured at 300 mA with the heat-sink temperature varied in increments of 2 °C. (b) Current and temperature tuning characteristics of the laser emission wavelength near the target HDO absorption frequency of 3777 cm−1.

Fig. 4
Fig. 4

(a) Emission spectra from 1- and 2-mm-long LC-DFB lasers at 30 °C, measured over the same range of current density. The spectra are offset vertically for clarity, and the relevant DFB and Fabry-Perot frequency differences are indicated. (b) Normalized facet loss and frequency shift for the two longitudinal DFB modes closest to the Bragg frequency (δ = 0), calculated for different values of grating coupling strength, κL. (c) Frequency difference between the modes represented in (b) as a function of κL. The measured frequency spacing for DFB modes of the 1- and 2-mm-long lasers are shown for comparison.

Metrics