Abstract

A highly angle tolerant spectral filter has been implemented taking advantage of three-stage serially concatenated resonators in dielectric films, each of which involves a high-index cavity in a-Si, sandwiched with a pair of SiO2 films. For the constituent etalons, the free spectral range is individually adjusted by differentiating the thickness of the cavity, so that a primary infrared pass-band could be attained to present enhanced roll-off characteristics in conjunction with an appropriate bandwidth. The a-Si cavities relating to the three etalons are selected to be 117, 234, and 468-nm thick, while the SiO2 layer is uniformly 150-nm thick. The filter is actually created on a silica glass substrate, by alternately depositing SiO2 and a-Si films. The observed center wavelength, bandwidth, and peak transmission efficiency are about 900 nm, 120 nm, and over 90%, respectively, for normal incidence. In response to an angle change amounting to 60°, the relative wavelength shift and the variation in peak transmission become barely 0.03 and 8%, respectively. Finally, a detecting cell is constructed by integrating the prepared filter with a photodiode, thus rendering a 3-dB angular bandwidth of 90°. By adequately arranging three detecting cells in a fixture, a compact, portable optical receiver could then be constructed. For incoming collimated light at λ = 905 nm, the infrared receiver exhibits an extended 3-dB angular acceptance as large as 160°.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).
  2. D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News13(10), 36–42 (2002).
    [CrossRef]
  3. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
    [CrossRef]
  4. J. Akella, M. Yuksel, and S. Kalyanaraman, “Multi-channel communication in free-space optical networks for the last mile,” in 15th IEEE Workshop on Local & Metropolitan Area Networks, 2007. LANMAN 2007 (IEEE, 2007), pp. 43–48.
  5. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
    [CrossRef]
  6. T. Fohl, “Wide angle, narrow band optical filter,” U.S. Patent 5,288,992 (Feb. 22, 1994).
  7. B. E. Johnson, T. A. Lindsay, D. L. Brodeur, R. E. Morton, and M. A. Regnier, “Wide-angle, high-speed, free-space optical communication system,” U.S. Patent 5,359,446 (Oct. 25, 1994).
  8. A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Reducing the effects of artificial light interference in wireless infrared transmission systems,” in IEE Colloquium “Optical free space communication links,” (Savoy Place, U. K., 1996), pp. 5/1–510.
  9. G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
    [CrossRef]
  10. M. Bartek, J. H. Correia, and R. F. Wolffenbuttel, “Micromachined Fabry-Perot optical filters,” in Second International Conference onAdvanced Semiconductor Devices and Microsystems, 1998. ASDAM '98(1998), pp. 283–286.
  11. Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
    [CrossRef]
  12. M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
    [CrossRef]
  13. Q.-H. Wang, D.-H. Li, B.-J. Peng, Y.-H. Tao, and W.-X. Zhao, “Multilayer dielectric color filters for optically written display using up-conversion of near infrared light,” J. Display Technol.4(2), 250–253 (2008).
    [CrossRef]
  14. M. L. Baker and V. L. Yen, “Effects of the variation of angle of incidence and temperature on infrared filter characteristics,” Appl. Opt.6(8), 1343–1351 (1967).
    [CrossRef] [PubMed]
  15. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express18(5), 5344–5349 (2010).
    [CrossRef] [PubMed]
  16. W. Nakagawa, P. C. Sun, C. H. Chen, and Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett.27(3), 191–193 (2002).
    [CrossRef] [PubMed]
  17. B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
    [CrossRef]
  18. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
    [CrossRef]
  19. R. K. Jeyachitra and R. Sukanesh, “Highly tunable photonic microwave filter based on a broadband optical source sliced by two cascaded Fabry-Perot filters,” J. Res. Technol. Educ.2(7), 53–55 (2009).
  20. J. Marti and J. Capmany, “Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources,” Appl. Opt.35(36), 7108–7111 (1996).
    [CrossRef] [PubMed]
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chapter 10.
  22. T. H. Noh, Y. T. Yoon, S. S. Lee, D. Y. Choi, and S. C. Lim, “Highly angle-tolerant spectral filter based on an etalon resonator incorporating a high index cavity,” J. Opt. Soc. Korea16(3), 299–304 (2012).
    [CrossRef]
  23. M. Bass, G. Li, and E. V. Stryland, Handbook of Optics, 3rd ed. (McGraw-Hill Professional, 2009), Vol. 4, Chaps. 2, 4, 5.

2012

2010

2009

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

R. K. Jeyachitra and R. Sukanesh, “Highly tunable photonic microwave filter based on a broadband optical source sliced by two cascaded Fabry-Perot filters,” J. Res. Technol. Educ.2(7), 53–55 (2009).

2008

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Q.-H. Wang, D.-H. Li, B.-J. Peng, Y.-H. Tao, and W.-X. Zhao, “Multilayer dielectric color filters for optically written display using up-conversion of near infrared light,” J. Display Technol.4(2), 250–253 (2008).
[CrossRef]

2006

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

2004

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

2003

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

2002

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News13(10), 36–42 (2002).
[CrossRef]

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

W. Nakagawa, P. C. Sun, C. H. Chen, and Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett.27(3), 191–193 (2002).
[CrossRef] [PubMed]

2001

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

1996

1967

Baker, M. L.

Bloom, S.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

Capmany, J.

Chen, C. H.

Cheong, B. H.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, E.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, Y.-S.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Choi, D. Y.

Choi, H.-Y.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Correia, J. H.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Dwivedi, A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Eo, Y.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Fainman, Y.

Faulkner, G.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Furuki, K.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Hammons, A. R.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Higashi, N.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Inaba, Y.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

Jablonski, M.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Jang, D.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Jeyachitra, R. K.

R. K. Jeyachitra and R. Sukanesh, “Highly tunable photonic microwave filter based on a broadband optical source sliced by two cascaded Fabry-Perot filters,” J. Res. Technol. Educ.2(7), 53–55 (2009).

Jones, S. D.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Juarez, J. C.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Kasano, M.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

Kikuchi, K.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Killinger, D.

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News13(10), 36–42 (2002).
[CrossRef]

Kim, H. S.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Kim, J.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Korevaar, E.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

Koyama, S.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Lee, S. S.

Li, D.-H.

Lim, S. C.

Marti, J.

Martins, J. S.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Minas, G.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Murata, T.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

Nakagawa, W.

Nichols, R. A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Noh, T. H.

O’Brien, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Oh, Y. J.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Peng, B.-J.

Prudnikov, O. N.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Rhee, F.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Ribeiro, J. C.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Sato, K.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Schuster, J.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

Shim, J.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Shin, S. T.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Sukanesh, R.

R. K. Jeyachitra and R. Sukanesh, “Highly tunable photonic microwave filter based on a broadband optical source sliced by two cascaded Fabry-Perot filters,” J. Res. Technol. Educ.2(7), 53–55 (2009).

Sun, P. C.

Tanaka, Y.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Tao, Y.-H.

Wang, Q.-H.

Weerackody, V.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

Willebrand, H.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

Wolffenbuttel, R. F.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Yaguchi, H.

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

Yen, V. L.

Yoon, Y.

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

Yoon, Y. T.

Yu, J.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Zhao, W.-X.

Appl. Opt.

Appl. Phys. Lett.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

IEEE Commun. Mag.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free space optical communications for next-generation military networks,” IEEE Commun. Mag.44(11), 46–51 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry–Perot etalon filter for diverged input beams,” IEEE Photon. Technol. Lett.14(9), 1315–1317 (2002).
[CrossRef]

M. Jablonski, Y. Tanaka, H. Yaguchi, K. Furuki, K. Sato, N. Higashi, and K. Kikuchi, “Entirely thin-film allpass coupled-cavity filters in a parallel configuration for adjustable dispersion-slope compensation,” IEEE Photon. Technol. Lett.13(11), 1188–1190 (2001).
[CrossRef]

IEEE Trans. Electron. Dev.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron. Dev.55(3), 754–759 (2008).
[CrossRef]

J. Display Technol.

J. Opt. Networking

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Networking2(6), 178–200 (2003).

J. Opt. Soc. Korea

J. Res. Technol. Educ.

R. K. Jeyachitra and R. Sukanesh, “Highly tunable photonic microwave filter based on a broadband optical source sliced by two cascaded Fabry-Perot filters,” J. Res. Technol. Educ.2(7), 53–55 (2009).

Opt. Express

Opt. Lett.

Opt. Photonics News

D. Killinger, “Free space optics for laser communication through the air,” Opt. Photonics News13(10), 36–42 (2002).
[CrossRef]

Sens. Actuators A Phys.

G. Minas, J. C. Ribeiro, J. S. Martins, R. F. Wolffenbuttel, and J. H. Correia, “An array of Fabry-Perot optical-channels for biological fluids analysis,” Sens. Actuators A Phys.115(2-3), 362–367 (2004).
[CrossRef]

Other

M. Bartek, J. H. Correia, and R. F. Wolffenbuttel, “Micromachined Fabry-Perot optical filters,” in Second International Conference onAdvanced Semiconductor Devices and Microsystems, 1998. ASDAM '98(1998), pp. 283–286.

J. Akella, M. Yuksel, and S. Kalyanaraman, “Multi-channel communication in free-space optical networks for the last mile,” in 15th IEEE Workshop on Local & Metropolitan Area Networks, 2007. LANMAN 2007 (IEEE, 2007), pp. 43–48.

T. Fohl, “Wide angle, narrow band optical filter,” U.S. Patent 5,288,992 (Feb. 22, 1994).

B. E. Johnson, T. A. Lindsay, D. L. Brodeur, R. E. Morton, and M. A. Regnier, “Wide-angle, high-speed, free-space optical communication system,” U.S. Patent 5,359,446 (Oct. 25, 1994).

A. J. C. Moreira, R. T. Valadas, and A. M. Duarte, “Reducing the effects of artificial light interference in wireless infrared transmission systems,” in IEE Colloquium “Optical free space communication links,” (Savoy Place, U. K., 1996), pp. 5/1–510.

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics, 3rd ed. (McGraw-Hill Professional, 2009), Vol. 4, Chaps. 2, 4, 5.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007), Chapter 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the proposed spectral filter enabling an enhanced angle tolerance.

Fig. 2
Fig. 2

Behavior of incident light inside an etalon adopting a high-index cavity in a-Si.

Fig. 3
Fig. 3

Calculated optical response for individual dielectric resonators together with the proposed filter.

Fig. 4
Fig. 4

Theoretical spectral responses for various angles of incidence (a) For unpolarized light (b) For the TE and TM polarizations.

Fig. 5
Fig. 5

Calculated reflection and absorption of the proposed filter, which account for the transmission thereof.

Fig. 6
Fig. 6

SEM image of the created filter employing serially stacked a-Si based etalons.

Fig. 7
Fig. 7

(a) Demonstrated filter response with the angle for unpolarized light (b) Corresponding peak transmission and relative center wavelength shift for various angles, with the calculated results included.

Fig. 8
Fig. 8

(a) Measured spectral transmission with the angle for the TE and TM polarizations (b) Corresponding peak transmission and relative wavelength shift for various angles, with the calculated results included.

Fig. 9
Fig. 9

(a) Schematic of the embodied IR receiver based on detecting cells comprising the spectral filter and PD (b) Received optical power for a unit detecting cell and the receiver as a function of the incidence angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T= (1R) 2 /[ (1R) 2 +4R sin 2 ( n 2 Lcos θ 2 2π/λ+2φ ) ]
( λ c / λ c )/ θ i =sin θ i cos θ i /( n 2 2 sin 2 θ i )

Metrics