Abstract

We propose a polarizer-free liquid crystal display (LCD) with an electrically switchable microlens array. The incident lights are controlled to focused or defocused states by index matching of the lens polymer and LC layer. By adopting two light-blocking masks that have a circular stop pattern and the complementary open pattern, the LCD was able to realize the entire gray scale. Additionally, to achieve fast response time characteristics, we introduce polymerized RMs within the alignment layers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127 (1971).
    [CrossRef]
  2. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
    [CrossRef]
  3. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
    [CrossRef]
  4. I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
    [CrossRef]
  5. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high-image-quality vertical-alignment-mode LCD,” in Digest of Technical Papers of 1997 Society for Information Display International Symposium (Society for Information Display, 1997), pp. 845–848.
  6. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
    [CrossRef]
  7. I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
    [CrossRef]
  8. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett.13(3), 91–93 (1968).
    [CrossRef]
  9. D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
    [CrossRef]
  10. Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
    [CrossRef]
  11. Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
    [CrossRef]
  12. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
    [CrossRef]
  13. S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt.46, 2079–2110 (1999).
  14. Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).
  15. Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
    [CrossRef]
  16. Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
    [CrossRef]

2011 (2)

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

2010 (1)

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

2009 (1)

2008 (1)

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

2006 (1)

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

2005 (1)

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

1999 (1)

S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt.46, 2079–2110 (1999).

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[CrossRef]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

1974 (1)

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127 (1971).
[CrossRef]

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett.13(3), 91–93 (1968).
[CrossRef]

Doane, J. W.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Gauza, S.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Green, S.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Gwag, J. S.

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett.13(3), 91–93 (1968).
[CrossRef]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127 (1971).
[CrossRef]

Jenkins, B. K.

S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt.46, 2079–2110 (1999).

Jeong, J.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

Jo, S. I.

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).

Khan, A.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[CrossRef]

Kim, J.-H.

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).

Kim, Y. W.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

Kim, Y.-K.

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

Lee, J. Y.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

Lee, S. H.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[CrossRef]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[CrossRef]

Lee, Y.-J.

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).

Liang, X.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Magyar, G.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

Piazzolla, S.

S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt.46, 2079–2110 (1999).

Pishnyak, O.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Ren, H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127 (1971).
[CrossRef]

Shiyanovskaya, I.

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Song, I. S.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

Taylor, G. N.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

White, D. L.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Wu, S.-T.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Wu, Y.-H.

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

Yu, C.-J.

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express17, 10298–10303 (2009).

Yu, I. H.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett.13(3), 91–93 (1968).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Zumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

Appl. Phys. Express (1)

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Improvement in switching speed of nematic liquid crystal microlens array with polarization independence,” Appl. Phys. Express3(9), 094102 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

Y.-J. Lee, C.-J. Yu, Y.-K. Kim, S. I. Jo, and J.-H. Kim, “Direct image of a molecular orientation of liquid crystal using directional polymerization of photoreactive mesogen,” Appl. Phys. Lett.98(3), 033106 (2011).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett.48(4), 269–271 (1986).
[CrossRef]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett.18(4), 127 (1971).
[CrossRef]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett.73(20), 2881–2883 (1998).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals. A new electro-optic effect,” Appl. Phys. Lett.13(3), 91–93 (1968).
[CrossRef]

J. Appl. Phys. (1)

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

J. Disp. Technol. (1)

Y.-H. Lin, H. Ren, S. Gauza, Y.-H. Wu, X. Liang, and S.-T. Wu, “Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel,” J. Disp. Technol.1(2), 230–233 (2005).
[CrossRef]

J. Mod. Opt. (2)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt.46, 2079–2110 (1999).

J. Phys. D (1)

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D39(11), 2367–2372 (2006).
[CrossRef]

J. Soc. Inf. Disp. (1)

I. Shiyanovskaya, S. Green, A. Khan, G. Magyar, O. Pishnyak, and J. W. Doane, “Substrate-free cholesteric liquid crystal display,” J. Soc. Inf. Disp.16(1), 113–115 (2008).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y. W. Kim, J. Jeong, S. H. Lee, J.-H. Kim, and C.-J. Yu, “Single polarizer liquid crystal display mode with fast response,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)543(1), 101–106 (2011).
[CrossRef]

Opt. Express (1)

Other (1)

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high-image-quality vertical-alignment-mode LCD,” in Digest of Technical Papers of 1997 Society for Information Display International Symposium (Society for Information Display, 1997), pp. 845–848.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The operating principle of the polarizer-free LCD with switchable microlens array. At initial state, the unfocused lights are blocked by the two BM masks. Under the electric field, the lights are focused and pass through the open holes of the 2nd BM layer.

Fig. 2
Fig. 2

Schematic diagram of fabrication process.

Fig. 3
Fig. 3

Cross-sectional SEM image and surface profile of microlens.

Fig. 4
Fig. 4

The microscopic textures of (a) the liquid crystal layer under crossed polarizers, and (b) LCD without polarizer at the focal plane (~3 mm), depending on the applied voltages. (c) and (d) show the microscopic images with different directions of the single polarizer. The proposed LCD shows polarization-independent characteristics. .

Fig. 5
Fig. 5

(a) The spatial light intensity profile of the polarizer-free LCD at the focal plane with only the first BM layer at focused/defocused state and (b) electro-optic characteristics of polarizer-free LCD and corresponding textures.

Metrics