Abstract

We present a detailed balance based approach for performing current density-voltage characteristic modeling of nanophotonic solar cells. This approach takes into account the intrinsic material non-idealities, and is useful for determining the theoretical limit of solar cell efficiency for a given structure. Our approach only requires the cell’s absorption spectra over all angles, which can be readily calculated using available simulation tools. Using this approach, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanoscale thin film structures, by showing that the enhancement is related to the absorption suppression in the immediate spectral region above the bandgap. We also show that with proper design, the use of a grating on a nanoscale thin film can increase its short-circuit current, while preserving its voltage-enhancing capabilities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Redfield, “Unified model of fundamental limitations on the performance of silicon solar cells,” IEEE Trans. Electron. Dev.27, 766–771 (1980).
    [CrossRef]
  2. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
    [CrossRef]
  3. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
    [CrossRef]
  4. H. A. Atwater, “Paths to high efficiency low-cost photovoltaics,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000001–000003.
    [CrossRef]
  5. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
    [CrossRef] [PubMed]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
    [CrossRef]
  7. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  8. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008).
    [CrossRef]
  9. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
    [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17, 19371–19381 (2009).
    [CrossRef] [PubMed]
  11. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express17, 20975–20990 (2009).
    [CrossRef] [PubMed]
  12. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
    [CrossRef]
  13. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010).
    [CrossRef] [PubMed]
  14. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film si solar cells,” Opt. Express19, A841–A850 (2011).
    [CrossRef] [PubMed]
  15. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011).
    [CrossRef] [PubMed]
  16. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
    [CrossRef]
  17. C. O. McPheeters and E. T. Yu, “Computational analysis of thin film ingaas/gaas quantum well solar cells with back side light trapping structures,” Opt. Express20, A864–A878 (2012).
    [CrossRef] [PubMed]
  18. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
    [CrossRef] [PubMed]
  19. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
    [CrossRef]
  20. A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
    [CrossRef] [PubMed]
  21. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  22. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.
  23. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
    [CrossRef] [PubMed]
  24. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961).
    [CrossRef]
  25. National Renewable Energy Lab (NREL), http://rredc.nrel.gov/solar/spectra/am1.5/ , Air Mass 1.5 (AM1.5) Global Spectrum (ASTM173-03G) (2008).
  26. L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd ed. (Elsevier Butterworth-Heinemann, Waltham, MA, 1980), chap. V, pp. 183–190.
  27. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012).
    [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids: Volume 1 (Elsevier Academic Press, Waltham, MA, 1985), pp. 429–443.
  29. D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976).
    [CrossRef]
  30. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952).
    [CrossRef]
  31. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev.87, 387–387 (1952).
    [CrossRef]
  32. S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, NY, 2012), chap. 2, pp. 60–62.
  33. C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
    [CrossRef] [PubMed]
  34. G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
    [CrossRef]
  35. N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
    [CrossRef] [PubMed]
  36. U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
    [CrossRef]
  37. M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev.31, 671–678 (1984).
    [CrossRef]
  38. R. F. Pierret, Semiconductor Fundamentals: Volume 1, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1988), chap. 2, pp. 27,31.
  39. B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
    [CrossRef]

2012 (9)

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
[CrossRef]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

C. O. McPheeters and E. T. Yu, “Computational analysis of thin film ingaas/gaas quantum well solar cells with back side light trapping structures,” Opt. Express20, A864–A878 (2012).
[CrossRef] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
[CrossRef]

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012).
[CrossRef]

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
[CrossRef]

2011 (5)

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film si solar cells,” Opt. Express19, A841–A850 (2011).
[CrossRef] [PubMed]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011).
[CrossRef] [PubMed]

H. A. Atwater, “Paths to high efficiency low-cost photovoltaics,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000001–000003.
[CrossRef]

2010 (2)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008).
[CrossRef]

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

2004 (1)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

1999 (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

1993 (1)

U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
[CrossRef]

1984 (2)

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev.31, 671–678 (1984).
[CrossRef]

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

1980 (1)

D. Redfield, “Unified model of fundamental limitations on the performance of silicon solar cells,” IEEE Trans. Electron. Dev.27, 766–771 (1980).
[CrossRef]

1976 (1)

D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961).
[CrossRef]

1952 (2)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952).
[CrossRef]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev.87, 387–387 (1952).
[CrossRef]

Agrawal, M.

Alamariu, B. A.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Alivisatos, A. P.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

H. A. Atwater, “Paths to high efficiency low-cost photovoltaics,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000001–000003.
[CrossRef]

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express17, 20975–20990 (2009).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

Bermel, P.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Broderick, K. A.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

Bushmaker, A. W.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Chang, C.-C.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Chen, C.-C.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

Chi, C.-Y.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008).
[CrossRef]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

Cronin, S. B.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Dapkus, P. D.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Deceglie, M. G.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

Duan, X.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012).
[CrossRef]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express17, 20975–20990 (2009).
[CrossRef] [PubMed]

Gharghi, M.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

Gladden, C.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

Green, M.

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev.31, 671–678 (1984).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Hall, R. N.

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev.87, 387–387 (1952).
[CrossRef]

Higashi, G.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Hill, D.

D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976).
[CrossRef]

Hong, C.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, N.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
[CrossRef]

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Huffaker, D.

G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
[CrossRef]

Joannopoulos, J.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Joannopoulos, J. D.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008).
[CrossRef]

Johnson, S. G.

Kayes, B.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Keppner, H.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Kimerling, L. C.

X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film si solar cells,” Opt. Express19, A841–A850 (2011).
[CrossRef] [PubMed]

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Kizilyalli, I.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Kohler, K.

U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
[CrossRef]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

Kravtsov, Y. A.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.

Kurtz, S. R.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
[CrossRef]

Kuyanov, P.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

LaLumondiere, S.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd ed. (Elsevier Butterworth-Heinemann, Waltham, MA, 1980), chap. V, pp. 183–190.

Landsberg, P. T.

D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976).
[CrossRef]

LaPierre, R. R.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

Lee, M.-K.

S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, NY, 2012), chap. 2, pp. 60–62.

Li, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd ed. (Elsevier Butterworth-Heinemann, Waltham, MA, 1980), chap. V, pp. 183–190.

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17, 19371–19381 (2009).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012).
[CrossRef]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

Mallick, S. B.

Mariani, G.

G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
[CrossRef]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

McPheeters, C. O.

Michel, J.

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
[CrossRef]

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

Munday, J. N.

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

Nie, H.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Niv, A.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

Pacifici, D.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids: Volume 1 (Elsevier Academic Press, Waltham, MA, 1985), pp. 429–443.

Peng, Z.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

Peumans, P.

Pierret, R. F.

R. F. Pierret, Semiconductor Fundamentals: Volume 1, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1988), chap. 2, pp. 27,31.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Povinelli, M. L.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17, 19371–19381 (2009).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961).
[CrossRef]

Raman, A.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
[CrossRef] [PubMed]

Read, W. T.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952).
[CrossRef]

Redfield, D.

D. Redfield, “Unified model of fundamental limitations on the performance of silicon solar cells,” IEEE Trans. Electron. Dev.27, 766–771 (1980).
[CrossRef]

Reinhardt, F.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Ruhle, W. W.

U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.

Saeta, P. N.

Scofield, A.

G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
[CrossRef]

Shah, A.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Sheng, X.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961).
[CrossRef]

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952).
[CrossRef]

Spruytte, S.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Strauss, U.

U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
[CrossRef]

Sze, S. M.

S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, NY, 2012), chap. 2, pp. 60–62.

Tajik, N.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

Tatarskii, V. I.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.

Theiss, J.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

Torres, P.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Tscharner, R.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Twist, R.

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

Wyrsch, N.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Yablonovitch, E.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
[CrossRef]

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

Yao, M.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Yeh, T.-W.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Yi, Y.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Yu, E. T.

Yu, Z.

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
[CrossRef] [PubMed]

Zeng, L.

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

Zhang, X.

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

Zhou, C.

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008).
[CrossRef]

U. Strauss, W. W. Ruhle, and K. Kohler, “Auger recombination in intrinsic gaas,” Appl. Phys. Lett.62, 55–57 (1993).
[CrossRef]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183, 2233–2244 (2012).
[CrossRef]

IEEE J. Photovolt. (1)

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley-queisser limit,” IEEE J. Photovolt.2, 303–311 (2012).
[CrossRef]

IEEE Trans. Electron. Dev. (3)

D. Redfield, “Unified model of fundamental limitations on the performance of silicon solar cells,” IEEE Trans. Electron. Dev.27, 766–771 (1980).
[CrossRef]

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31, 711–716 (1984).
[CrossRef]

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev.31, 671–678 (1984).
[CrossRef]

J. Appl. Phys. (3)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of iii–v nanowire arrays on silicon,” J. Appl. Phys.112, 064321 (2012).
[CrossRef]

Nano Lett. (3)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12, 2894–2900 (2012).
[CrossRef] [PubMed]

C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in gaas nanowires,” Nano Lett.12, 4484–4489 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for gaas nanowire solar cells,” Nanotechnology22, 225402 (2011).
[CrossRef] [PubMed]

Opt. Express (6)

Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE (2)

H. A. Atwater, “Paths to high efficiency low-cost photovoltaics,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000001–000003.
[CrossRef]

B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, and G. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in “Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE,” (2011), pp. 000004–000008.
[CrossRef]

Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE (1)

G. Mariani, A. Scofield, and D. Huffaker, “High-perfomance patterned arrays of core-shell gaas nanopillar solar cells with in-situ ingap passivation layer,” in “Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE,” (2012), pp. 003080–003082.
[CrossRef]

Phys. Rev. (2)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev.87, 835–842 (1952).
[CrossRef]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev.87, 387–387 (1952).
[CrossRef]

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78, 023825 (2008).
[CrossRef]

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86, 041404 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

A. Niv, M. Gharghi, C. Gladden, O. D. Miller, and X. Zhang, “Near-field electromagnetic theory for thin solar cells,” Phys. Rev. Lett.109, 138701 (2012).
[CrossRef] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett.93, 213905 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107, 17491–17496 (2010).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

D. Hill and P. T. Landsberg, “A formalism for the indirect auger effect. i,” Proc. R. Soc. Lond. A Math. Phys. Sci.347, 547–564 (1976).
[CrossRef]

Science (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thin-film solar cells,” Science285, 692–698 (1999).
[CrossRef] [PubMed]

Other (6)

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3, 1st ed. (Springer-Verlag, New York, 1989), chap. 3.

E. D. Palik, Handbook of Optical Constants of Solids: Volume 1 (Elsevier Academic Press, Waltham, MA, 1985), pp. 429–443.

National Renewable Energy Lab (NREL), http://rredc.nrel.gov/solar/spectra/am1.5/ , Air Mass 1.5 (AM1.5) Global Spectrum (ASTM173-03G) (2008).

L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, 3rd ed. (Elsevier Butterworth-Heinemann, Waltham, MA, 1980), chap. V, pp. 183–190.

S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, NY, 2012), chap. 2, pp. 60–62.

R. F. Pierret, Semiconductor Fundamentals: Volume 1, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 1988), chap. 2, pp. 27,31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) GaAs grating nanostructure (gold color) with effective thickness L = ( 1 w h L a ) L where L′ is its actual thickness, a is its periodicity, and each air groove has width w and depth h, (b) GaAs thin film (gold color) with thickness L. Both structures in (a) and (b) have a perfect reflecting back surface (grey color). Also shown in (a) and (b) is the propagation direction of an incident plane wave with frequency ω, polar angle θ, and azimuthal angle ϕ [ϕ is omitted for the azimuthally symmetric thin film in (b)]. (c) shows the J-V curves for the structures in (a) and (b) with thickness L = 43.8 nm. (d)–(f) shows the following characteristics versus thickness L for the structures in (a) and (b): (d) short-circuit current density Jsc, (e) open-circuit voltage Voc, and (f) efficiency η. In (c)–(f), the grating structure has periodicity a = 456 nm, and air-groove dimensions (w = 0.24 a, h = 0.52 L′).

Fig. 2
Fig. 2

Contour-density plots of absorptivity spectra for different polar angles θ of: (a) an L = 10 μm thick bulk GaAs structure with a multi-layer anti-reflection coating on its front surface, (b) thin film structure associated with dashed J-V curve in Fig. 1(c), and (c) grating structure associated with solid J-V curve in Fig. 1(c). The plot in (c) includes an integration over all azimuthal angles ϕ for each polar angle θ. The absorptivity in all plots is the mean absorptivity of the transverse electric and transverse magnetic incident polarizations.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F s F c ( V ) + R ( 0 ) R ( V ) J / q = 0 .
F s = ω g d ω S ( ω ) A ( ω , θ = 0 , ϕ = 0 )
F c ( V ) = F co exp ( q V k T c )
F co = 0 2 π d ϕ 0 π 2 d θ ω g d ω Θ ( ω ) A ( ω , θ , ϕ ) cos ( θ ) sin ( θ ) .
J sc = q ( F s F co ) .
F s + R ( 0 ) = F c ( V oc ) + R ( V oc ) .
V oc k T c q log ( F s F co ) .
R ( V ) = C n L n 2 p + C p L p 2 n
R ( V ) = ( C n + C p ) L n i 3 exp ( 3 q V 2 k T c )
Θ ( ω ) ω 2 4 c 2 π 3 exp ( ω k T c ) H ( ω ω g )

Metrics