Abstract

We propose and experimentally demonstrate a novel full-duplex bi-directional subcarrier multiplexing (SCM)-wavelength division multiplexing (WDM) visible light communication (VLC) system based on commercially available red-green-blue (RGB) light emitting diode (LED) and phosphor-based LED (P-LED) with 575-Mb/s downstream and 225-Mb/s upstream transmission, employing various modulation orders of quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM). For the downlink, red and green colors/wavelengths are assigned to carry useful information, while blue chip is just kept lighting to maintain the white color illumination, and for the uplink, the low-cost P-LED is implemented. In this demonstration, pre-equalization and post-equalization are also adopted to compensate the severe frequency response of LEDs. Using this scheme, 4-user downlink and 1-user uplink transmission can be achieved. Furthermore, it can support more users by adjusting the bandwidth of each sub-channel. Bit error rates (BERs) of all links are below pre-forward-error-correction (pre-FEC) threshold of 3.8x 10−3 after 66-cm free-space delivery. The results show that this scheme has great potential in the practical VLC system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709 106–1 –709 106–9 (2008).
  2. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
    [CrossRef]
  3. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
    [CrossRef]
  4. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol. 28(24), −3512–3518 (2010).
  5. A. H. Azhar, T. Tran, and D. O Brien, ”Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” Proc. of Globecom Workshops, 1052–1056 (2010).
  6. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
    [CrossRef] [PubMed]
  7. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
    [CrossRef]
  8. T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).
  9. Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express20(21), 23019–23024 (2012).
    [CrossRef] [PubMed]
  10. R. Elschner, T. Richter, T. Kato, S. Watanabe, and C. Schubert, “Distributed coherent optical OFDM multiplexing using fiber frequency conversion and free-running lasers,” in Proc. OFC, Los Angeles, CA, PDP5C.8 (2012).

2012

2009

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

2008

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

2003

T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).

Buttner, A.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
[CrossRef] [PubMed]

Chow, C. W.

Ciaramella, E.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
[CrossRef] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
[CrossRef] [PubMed]

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
[CrossRef] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Haruyama, S.

T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Khalid, A. M.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express20(26), B501–B506 (2012).
[CrossRef] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Komine, T.

T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Langer, K.-D.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Liu, Y.

Liu, Y. F.

Liu, Y. L.

Nakagawa, M.

T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).

Nerreter, S.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Oh, Y. J.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

Tsang, H. K.

Vucic, J.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Walewski, J. W.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

Yeh, C. H.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

IEEE Photon. J.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. J. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett.20(14), 1243–1245 (2008).
[CrossRef]

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” IEEE Photon. Technol. Lett.21(20), 1511–1513 (2009).
[CrossRef]

IEIC Tech. Report

T. Komine, S. Haruyama, and M. Nakagawa, “Bidirectional visible-light communication using corner cube modulator,” IEIC Tech. Report102, 41–46 (2003).

Opt. Express

Other

R. Elschner, T. Richter, T. Kato, S. Watanabe, and C. Schubert, “Distributed coherent optical OFDM multiplexing using fiber frequency conversion and free-running lasers,” in Proc. OFC, Los Angeles, CA, PDP5C.8 (2012).

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol. 28(24), −3512–3518 (2010).

A. H. Azhar, T. Tran, and D. O Brien, ”Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” Proc. of Globecom Workshops, 1052–1056 (2010).

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709 106–1 –709 106–9 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagrams of proposed bi-directional VLC system (AWG: arbitrary waveform generator, EA: electrical amplifier, LPF: low-pass filter, OSC: real-time oscilloscope, DC: direct current, PD: photodiode, DL: downlink, UL: uplink).

Fig. 2
Fig. 2

(a) Experiment setup for the VLC system. (b) downlink tranceiver. (c) uplink tranceiver.

Fig. 3
Fig. 3

Measured optical spectrum of different LEDs (a) RGB LED. (b) P-LED.

Fig. 4
Fig. 4

Channel response of individual LED.

Fig. 5
Fig. 5

Electrical spectra of different wavelengths: (a) P-LED (w/o pre-) . (b) red (w/o pre-). (c) green (w/o pre-). (d) P-LED (w pre-). (e) red (w pre-) . (f) green (w pre-). (g) P-LED(w post). (h) red (w post). (i) green (w post).

Fig. 6
Fig. 6

Measured BER versus input power of P-LED.

Fig. 7
Fig. 7

(a) Measured BERs of downlink. (b) Measured BERs of uplink.

Fig. 8
Fig. 8

Measured BERs of uplink versus distance.

Metrics