Abstract

This paper describes a novel laser diagnostic and its demonstration in a practical aero-propulsion engine (General Electric J85). The diagnostic technique, named hyperspectral tomography (HT), enables simultaneous 2-dimensional (2D) imaging of temperature and water-vapor concentration at 225 spatial grid points with a temporal response up to 50 kHz. To our knowledge, this is the first time that such sensing capabilities have been reported. This paper introduces the principles of the HT techniques, reports its operation and application in a J85 engine, and discusses its perspective for the study of high-speed reactive flows.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst.33(1), 1–40 (2011).
    [CrossRef]
  2. K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
    [CrossRef]
  3. F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
  5. R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst.31(1), 49–75 (2007).
    [CrossRef]
  6. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
    [CrossRef]
  7. M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
    [CrossRef]
  8. B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B.98(2-3), 581–591 (2010).
    [CrossRef]
  9. K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
    [CrossRef]
  10. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
    [CrossRef] [PubMed]
  11. D. Hoffman, K. U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett.21(7), 525–527 (1996).
    [CrossRef] [PubMed]
  12. P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
    [CrossRef]
  13. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
    [CrossRef] [PubMed]
  14. A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
    [CrossRef]
  15. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt.44(31), 6786–6795 (2005).
    [CrossRef] [PubMed]
  16. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.44(31), 6578–6592 (2005).
    [CrossRef] [PubMed]
  17. C. T. Herman, “Image reconstruction from projections - the fundamentals of computerized tomography,” in Computer Science and Applied Mathematics (Academic Press, 1980).
  18. W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.179(4), 250–255 (2008).
    [CrossRef]
  19. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.47(23), 4186–4192 (2008).
    [CrossRef] [PubMed]
  20. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.47(21), 3751–3759 (2008).
    [CrossRef] [PubMed]
  21. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602–8613 (2009).
    [CrossRef] [PubMed]
  22. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
    [CrossRef] [PubMed]
  23. K. P. Savage, G. R. Beitel, R. S. Hiers, and R. J. Schulz, “Test capabilities in the AEDC/UTSI J85 turbojet test stand,” in 2007 U. S. Air Force T&E Days (AIAA, 2007)
  24. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
    [CrossRef] [PubMed]
  25. S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
    [CrossRef]
  26. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.33(7), 738–740 (2008).
    [CrossRef] [PubMed]
  27. A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt.49(26), 4963–4972 (2010).
    [CrossRef] [PubMed]
  28. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009).
    [CrossRef] [PubMed]
  29. X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011).
    [CrossRef]
  30. L. Ma, X. Li, W. Cai, S. Roy, J. R. Gord, and S. T. Sanders, “Selection of multiple optimal absorption transitions for nonuniform temperature sensing,” Appl. Spectrosc.64(11), 1274–1282 (2010).
    [CrossRef] [PubMed]

2012 (1)

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

2011 (5)

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst.33(1), 1–40 (2011).
[CrossRef]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (4)

2007 (2)

2005 (3)

2004 (1)

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

2001 (1)

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

1998 (1)

A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
[CrossRef]

1996 (1)

1980 (1)

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

Alden, M.

K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
[CrossRef]

An, X.

Baer, D. S.

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Barlow, R. S.

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst.31(1), 49–75 (2007).
[CrossRef]

K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
[CrossRef]

Biedermann, B.

Boxx, I.

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
[CrossRef]

Cai, W.

Carey, S. J.

Carter, C.

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
[CrossRef]

Caswell, A. W.

Cheung, B. H.

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B.98(2-3), 581–591 (2010).
[CrossRef]

Chojnacki, A. M.

A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
[CrossRef]

Chou, S. I.

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Colbourne, S. M.

Collison, W. Z.

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Crossley, S. D.

Dagel, D.

Danehy, P. M.

Emmerman, P. J.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

Ewing, D. J.

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.179(4), 250–255 (2008).
[CrossRef]

Fujimoto, J. G.

Gabet, K. N.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

Garcia-Stewart, C. A.

Gauldin, F. C.

A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
[CrossRef]

Gord, J. R.

Goulard, R.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

Hanson, R. K.

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst.33(1), 1–40 (2011).
[CrossRef]

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B.98(2-3), 581–591 (2010).
[CrossRef]

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Herold, R. E.

Hindle, F. P.

Hoffman, D.

Huber, R.

Hurr, W. J.

Ivey, C. B.

Jiang, N.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

Jirauschek, C.

Kohse-Hoinghaus, K.

K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
[CrossRef]

Kraetschmer, T.

Kranendonk, L. A.

Leipertz, A.

Lempert, W. R.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

Li, X.

Lipor, J. J.

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011).
[CrossRef]

Litt, T. J.

Ma, L.

McCann, H.

McManus, B.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Meier, W.

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
[CrossRef]

Meyer, T. R.

Miller, J. D.

Münch, K. U.

Murray, S. C.

Nelson, D.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Ni, T. Q.

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Okura, Y.

Ozanyan, K. B.

Paci, P.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Patton, R. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

Pegrum, S. H.

Rein, K.

Roy, S.

Sanders, S. T.

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
[CrossRef] [PubMed]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011).
[CrossRef]

L. Ma, X. Li, W. Cai, S. Roy, J. R. Gord, and S. T. Sanders, “Selection of multiple optimal absorption transitions for nonuniform temperature sensing,” Appl. Spectrosc.64(11), 1274–1282 (2010).
[CrossRef] [PubMed]

A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt.49(26), 4963–4972 (2010).
[CrossRef] [PubMed]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602–8613 (2009).
[CrossRef] [PubMed]

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.33(7), 738–740 (2008).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

Santoro, R. J.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

Semerjian, H. G.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

Shorter, J.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Shouse, D. T.

Stoehr, M.

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

Stohr, M.

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
[CrossRef]

Sutton, J. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

Takami, K.

Tanimura, S.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Turner, P. J.

Urata, Y.

Varghese, P. L.

Villarreal, R.

Webster, M.

Wolfrum, E.

K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
[CrossRef]

Wolga, G. J.

A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
[CrossRef]

Wright, P.

Wyslouzil, B. E.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Zahniser, M.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Zvinevich, Y.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

Appl. Opt. (7)

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.44(31), 6578–6592 (2005).
[CrossRef] [PubMed]

R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt.44(31), 6786–6795 (2005).
[CrossRef] [PubMed]

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.47(21), 3751–3759 (2008).
[CrossRef] [PubMed]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.47(23), 4186–4192 (2008).
[CrossRef] [PubMed]

A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt.49(26), 4963–4972 (2010).
[CrossRef] [PubMed]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
[CrossRef] [PubMed]

Appl. Phys. B. (3)

I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009).
[CrossRef]

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B.98(2-3), 581–591 (2010).
[CrossRef]

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012).
[CrossRef]

Appl. Spectrosc. (1)

Combust. Sci. Technol. (1)

A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998).
[CrossRef]

Comput. Phys. Commun. (1)

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.179(4), 250–255 (2008).
[CrossRef]

J. Chem. Phys. (1)

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004).
[CrossRef] [PubMed]

J. Energy (1)

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011).
[CrossRef]

J. Vac. Sci. Technol. A (1)

S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. Combust. Inst. (4)

R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst.31(1), 49–75 (2007).
[CrossRef]

M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst.33(1), 1–40 (2011).
[CrossRef]

K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005).
[CrossRef]

Other (4)

F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).

C. T. Herman, “Image reconstruction from projections - the fundamentals of computerized tomography,” in Computer Science and Applied Mathematics (Academic Press, 1980).

K. P. Savage, G. R. Beitel, R. S. Hiers, and R. J. Schulz, “Test capabilities in the AEDC/UTSI J85 turbojet test stand,” in 2007 U. S. Air Force T&E Days (AIAA, 2007)

Supplementary Material (3)

» Media 1: AVI (1723 KB)     
» Media 2: AVI (1540 KB)     
» Media 3: AVI (2277 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The mathematical formulation of the hyperspectral tomography problem.

Fig. 2
Fig. 2

Overview of the experimental setup with a 30-beam HT sensor applied at the exhaust stream of a J85 engine. The laser system (labeled as TDM 3-FDML) was operated from the facility control room and 60-m-long optical fibers were used to transmit the laser signals to the engine location. A 4 × 32 multiplexer located near the engine was used to combine and split the three laser signals into 32 independent outputs. A customer-built tomography frame was mounted at the measurement location (the exit plane of the exhaust nozzle), holding the probe laser beams in position to create the 15 × 15 grid pattern for the tomographic reconstruction.

Fig. 3
Fig. 3

Schematic representation of the optical test section hardware. A 15 x 15 crossing beam grid pattern with a 36.3-mm beam spacing was used for the tomographic reconstruction. Light from the laser was delivered to the test section via single-mode fibers (SMF) and was collimated and transmitted across the engine exhaust flow. 1-in collection lenses were used on the receiving side and focused the laser light onto photodiodes. Panel (a): configuration of the probe beams. Panel (b): a photograph of the frame and the optical components overlaid by a sample reconstruction to illustrate the location of the flowfield. Panel(c): schematic of the location of the measurements plane in the exhaust and a sample measurement of the 2D distribution of the temperature measured at this location.

Fig. 4
Fig. 4

Absorption spectra measured during a single scan of the TDM 3-FDML laser operating at 50.24337 kHz (~20 microseconds). Each panel shows the spectra measured by one of the three FDML lasers.

Fig. 5
Fig. 5

A set of sample results obtained in the J85 engine. Each panel shows one frame, arbitrary chosen out of 100 frames of measurements, corresponding to 2 ms of measurement duration. Panel (a): frame 1 of temperature distribution under ground-idle operation (Media 1). Panel (b): frame 100 of temperature distribution under full military operation (Media 2). Panel (c): frame 74 of temperature distribution full-afterburner operation (Media 3). Panel (d): frame 74 of H2O mole-fraction distribution under full-afterburner operation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p( L j , λ i )= a b k S( λ k ,T( ) )X( )Φ( λ k λ i )Pd
D( T rec , X rec )= j=1 J i=1 I [ p m ( L j , λ i ) p c ( L j , λ i )] 2 p m ( L j , λ i ) 2
F( T rec , X rec )=D( T rec , X rec )+ γ T R T ( T rec )+ γ X R X ( X rec )

Metrics