Abstract

We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bradbury and P. Evennett, Contrast Techniques in Light Microscopy (BIOS Scientific, 1996).
  2. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
    [CrossRef] [PubMed]
  3. H. Gundlach, “Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology,” Opt. Eng.32(12), 3223–3228 (1993).
    [CrossRef]
  4. H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt.35(13), 2230–2234 (1996).
    [CrossRef] [PubMed]
  5. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A16(9), 2185–2199 (1999).
    [CrossRef] [PubMed]
  6. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett.34(19), 2988–2990 (2009).
    [CrossRef] [PubMed]
  7. T. Kim, S. Sridharan, and G. Popescu, “Gradient field microscopy of unstained specimens,” Opt. Express20(6), 6737–6745 (2012).
    [CrossRef] [PubMed]
  8. F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Mon. Not. R. Astron. Soc.94, 377–384 (1934).
  9. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett.35(14), 2370–2372 (2010).
    [CrossRef] [PubMed]
  10. R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
    [CrossRef] [PubMed]
  11. G. M. Langford, “Video-enhanced microscopy for analysis of cytoskeleton structure and function,” Methods Mol. Biol.161, 31–43 (2001).
    [PubMed]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  13. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  14. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  15. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  16. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
    [CrossRef] [PubMed]
  17. S. A. Shroff, “Structured Illumination Imaging,” Ph.D thesis (The University of Rochester, 2010).
  18. B. J. Chang, S. H. Lin, L. J. Chou, and S. Y. Chiang, “Subdiffraction scattered light imaging of gold nanoparticles using structured illumination,” Opt. Lett.36(24), 4773–4775 (2011).
    [CrossRef] [PubMed]
  19. S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express3(8), 1841–1854 (2012).
    [CrossRef] [PubMed]
  20. P. Hariharan, “The Sénarmont Compensator: An Early Application of the Geometric Phase,” J. Mod. Opt.40(11), 2061–2064 (1993).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier optics 2nd Edition (McGraw Hill, 1996).
  22. S. B. Mehta and C. J. Sheppard, “Partially coherent image formation in differential interference contrast (DIC) microscope,” Opt. Express16(24), 19462–19479 (2008).
    [CrossRef] [PubMed]
  23. B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express17(17), 14710–14721 (2009).
    [CrossRef] [PubMed]
  24. S. V. King, “Quantitative phase information from differential interference contrast microscopy,” Ph. D thesis (University of Colorado at Boulder, 2009).
  25. S. D. Babacan, Z. Wang, M. Do, and G. Popescu, “Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy,” Biomed. Opt. Express2(7), 1815–1827 (2011).
    [CrossRef] [PubMed]
  26. C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
    [CrossRef]
  27. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging,” Opt. Express18(13), 14063–14078 (2010).
    [CrossRef] [PubMed]
  28. Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
    [CrossRef]
  29. M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
    [CrossRef]

2012

2011

2010

2009

2008

2007

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

2006

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

2001

G. M. Langford, “Video-enhanced microscopy for analysis of cytoskeleton structure and function,” Methods Mol. Biol.161, 31–43 (2001).
[PubMed]

2000

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

1999

1997

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

1996

1994

1993

H. Gundlach, “Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology,” Opt. Eng.32(12), 3223–3228 (1993).
[CrossRef]

P. Hariharan, “The Sénarmont Compensator: An Early Application of the Geometric Phase,” J. Mod. Opt.40(11), 2061–2064 (1993).
[CrossRef]

1981

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
[CrossRef] [PubMed]

1934

F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Mon. Not. R. Astron. Soc.94, 377–384 (1934).

Allen, N. S.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
[CrossRef] [PubMed]

Allen, R. D.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
[CrossRef] [PubMed]

Babacan, S. D.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Berezhnaya, E. V.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Bernet, S.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Chang, B. J.

Chang, Y. C.

Chiang, S. Y.

Choi, W.

Chou, L. J.

Chowdhury, S.

Cogswell, C. J.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Conchello, J. A.

Dasari, R. R.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dhalla, A. H.

Dhonukshe, P. B.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Do, M.

Dorn, A.

Fassl, S.

Fedorenko, Y. P.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Feld, M. S.

Fu, D.

Gadella, T. W. J.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Gundlach, H.

H. Gundlach, “Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology,” Opt. Eng.32(12), 3223–3228 (1993).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Hariharan, P.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

P. Hariharan, “The Sénarmont Compensator: An Early Application of the Geometric Phase,” J. Mod. Opt.40(11), 2061–2064 (1993).
[CrossRef]

Heckenberg, N.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hoebe, R. A.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Iwasaki, J.

Iwasaki, Y.

Izatt, J.

Khan, S.

Kim, T.

Knyazeva, E. A.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Komandirov, M. A.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Kovaleva, V. D.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Lai, K.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Langford, G. M.

G. M. Langford, “Video-enhanced microscopy for analysis of cytoskeleton structure and function,” Methods Mol. Biol.161, 31–43 (2001).
[PubMed]

Larkin, K. G.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Lin, S. H.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Littleton, B.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Liu, X.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

Longstaff, D.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Lv, X.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

Manders, E. M.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Maurer, C.

McIntyre, T. J.

Mehta, S. B.

Munroe, P.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Oh, S.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Ooki, H.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Popescu, G.

Preza, C.

Ritsch-Marte, M.

Rubinsztein-Dunlop, H.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Rudkovskii, M. V.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sarafis, V.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Sheppard, C. J.

Smith, N. I.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Snyder, D. L.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Sridharan, S.

Travis, J. L.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
[CrossRef] [PubMed]

Uzdensky, A. B.

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

Van Noorden, C. J.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Van Oven, C. H.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Wang, Z.

Wichmann, J.

Wu, Y.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

Yamauchi, T.

Yaqoob, Z.

Zeng, S.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

Zernike, F.

F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Mon. Not. R. Astron. Soc.94, 377–384 (1934).

Zhou, W.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Cell Motil.

R. D. Allen, N. S. Allen, and J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris,” Cell Motil.1(3), 291–302 (1981).
[CrossRef] [PubMed]

J. Innov. Opt. Health Sci.

Y. Wu, X. Liu, W. Zhou, X. Lv, and S. Zeng, “Observing neuronal activities with random access two-photon microscope,” J. Innov. Opt. Health Sci.02(01), 67–71 (2009).
[CrossRef]

M. A. Komandirov, E. A. Knyazeva, Y. P. Fedorenko, M. V. Rudkovskii, E. V. Berezhnaya, V. D. Kovaleva, and A. B. Uzdensky, “Chemical modulation of photodynamic injury of glial cells,” J. Innov. Opt. Health Sci.04(04), 429–435 (2011).
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Mod. Opt.

P. Hariharan, “The Sénarmont Compensator: An Early Application of the Geometric Phase,” J. Mod. Opt.40(11), 2061–2064 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Methods Mol. Biol.

G. M. Langford, “Video-enhanced microscopy for analysis of cytoskeleton structure and function,” Methods Mol. Biol.161, 31–43 (2001).
[PubMed]

Micron

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007).
[CrossRef] [PubMed]

Mon. Not. R. Astron. Soc.

F. Zernike, “Diffraction theory of the knife-edge test and its improved form, the phase-contrast method,” Mon. Not. R. Astron. Soc.94, 377–384 (1934).

Nat. Biotechnol.

R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Opt. Eng.

H. Gundlach, “Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology,” Opt. Eng.32(12), 3223–3228 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Science

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Other

S. A. Shroff, “Structured Illumination Imaging,” Ph.D thesis (The University of Rochester, 2010).

S. Bradbury and P. Evennett, Contrast Techniques in Light Microscopy (BIOS Scientific, 1996).

S. V. King, “Quantitative phase information from differential interference contrast microscopy,” Ph. D thesis (University of Colorado at Boulder, 2009).

J. W. Goodman, Introduction to Fourier optics 2nd Edition (McGraw Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System setup of the structured illumination DIC. (Inset) Spatial light modulator (SLM) patterns designed to generate 0° and 90° orthogonal illumination patterns.

Fig. 2
Fig. 2

Principle of resolution improvement of the SI-DIC based on the expansion of the bandwidth of CTF. The spectra (a) and (c) are shifted + k0 and - k0, respectively, and then be added to the spectrum (b) to form the final spectrum (d), therefore the bandwidth of the CTF is extended.

Fig. 3
Fig. 3

Simulation of 116.25 nm beads of SI-DIC (b) and conventional DIC (e) images. (a) and (d) are the corresponding spectra. (c) and (f) are the intensity profiles of a single bead along the dotted line in (b) and (e), with Gaussian fit. Double-headed arrow indicates the direction of shear of DIC.

Fig. 4
Fig. 4

Experimental spectra, images and intensity profiles of 53 nm polystyrene beads for SI-DIC and conventional DIC. The intensity profiles in (c) and (f) are along the dotted line in (a) and (b), with Gaussian fit. Double-headed arrow indicates the direction of shear of DIC.

Fig. 5
Fig. 5

Filaments of human umbilical vein endothelial cells from SI-DIC (a) and conventional DIC (b) images. (c) and (d) are magnified views of the boxed regions in (a) and (b), respectively. (e) is the intensity distribution along the dotted lines in (c) and (d).

Fig. 6
Fig. 6

Human umbilical vein endothelial cells from SI-DIC (a) and conventional DIC (b) images. (c) and (d) are enlargements of the boxed areas in (a) and (b), respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u(r)=[ u 0 (r)a(r)] h DIC (r),
h DIC (r)=0.5[exp(iθ)h(r+Δ)exp(iθ)h(rΔ)],
u(r)= 1 2 {[exp(i k 0 r+iϕ)+exp(i k 0 riϕ)]a(r)} h DIC (r).
U(k)= 1 2 [exp(iϕ)A(k k 0 )+exp(iϕ)A(k+ k 0 )] H DIC (k),
D(k)= 1 2 [A(k k 0 ) H DIC (k)][A(k+ k 0 ) H DIC (k)] + 1 4 exp(2iϕ)[A(k k 0 ) H DIC (k)][A(k k 0 ) H DIC (k)] + 1 4 exp(2iϕ)[A(k+ k 0 ) H DIC (k)][A(k+ k 0 ) H DIC (k)].
H ' DIC (k)= H DIC (k k 0 )+ H DIC (k+ k 0 ).
D'(k)=2[A(k k 0 ) H DIC (k)][A(k+ k 0 ) H DIC (k)] +[A(k k 0 ) H DIC (k)][A(k k 0 ) H DIC (k)] +[A(k+ k 0 ) H DIC (k)][A(k+ k 0 ) H DIC (k)].

Metrics