Abstract

An effective optical design method is proposed to solve the problem of adjustable view angle for infrared illuminator in active night vision systems. A novel total internal reflection (TIR) lens with three segments of the side surface is designed as the secondary optics of infrared emitting diode (IRED). It can provide three modes with different view angles to achieve a complete coverage of the monitored area. As an example, a novel TIR lens is designed for SONY FCB-EX 480CP camera. Optical performance of the novel TIR lens is investigated by both numerical simulation and experiments. The results demonstrate that it can meet the requirements of different irradiation distances quit well with view angles of 7.5°, 22° and 50°. The mean optical efficiency is improved from 62% to 75% and the mean irradiance uniformity is improved from 65% to 85% compared with the traditional structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Moisel, “Solid state night vision systems,” Proc. SPIE5663, 47–54 (2005).
    [CrossRef]
  2. R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt.51(13), 2257–2263 (2012).
    [CrossRef] [PubMed]
  3. S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A28(5), 815–820 (2011).
    [CrossRef] [PubMed]
  4. Sony, http://pro.sony.com/bbsccms/assets/files/mkt/indauto/manuals/FCB-EX480C_EX48C_Technical_Manual.pdf .
  5. J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
    [CrossRef]
  6. J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng.49(9), 093001 (2010).
    [CrossRef]
  7. K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
    [CrossRef]
  8. F. Zhao, “Practical reflector design and calculation for general illumination,” Proc. SPIE5942, 59420J, 59420J-9 (2005).
    [CrossRef]

2012

2011

S. Zhao, K. Wang, F. Chen, D. Wu, and S. Liu, “Lens design of LED searchlight of high brightness and distant spot,” J. Opt. Soc. Am. A28(5), 815–820 (2011).
[CrossRef] [PubMed]

J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
[CrossRef]

2010

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

2005

F. Zhao, “Practical reflector design and calculation for general illumination,” Proc. SPIE5942, 59420J, 59420J-9 (2005).
[CrossRef]

J. Moisel, “Solid state night vision systems,” Proc. SPIE5663, 47–54 (2005).
[CrossRef]

Cai, J. Y.

J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
[CrossRef]

Chen, F.

Chen, J. J.

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Huang, K. L.

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

Huang, L. L.

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

Li, H. F.

Lin, C. T.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Liu, S.

Liu, X.

Lo, Y. C.

J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
[CrossRef]

Moisel, J.

J. Moisel, “Solid state night vision systems,” Proc. SPIE5663, 47–54 (2005).
[CrossRef]

Sun, C. C.

J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
[CrossRef]

Wang, K.

Wang, T. Y.

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

Wu, D.

Wu, R. M.

Zhao, F.

F. Zhao, “Practical reflector design and calculation for general illumination,” Proc. SPIE5942, 59420J, 59420J-9 (2005).
[CrossRef]

Zhao, S.

Zheng, Z. R.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Eng.

J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng.49(9), 093001 (2010).
[CrossRef]

Proc. SPIE

K. L. Huang, J. J. Chen, T. Y. Wang, and L. L. Huang, “Free-form lens design for LED indoor illumination,” Proc. SPIE7852, 78521D, 78521D-8 (2010).
[CrossRef]

F. Zhao, “Practical reflector design and calculation for general illumination,” Proc. SPIE5942, 59420J, 59420J-9 (2005).
[CrossRef]

J. Moisel, “Solid state night vision systems,” Proc. SPIE5663, 47–54 (2005).
[CrossRef]

J. Y. Cai, Y. C. Lo, and C. C. Sun, “Optical design of the focal adjustable flashlight based on a power white-LED,” Proc. SPIE8128, 812806, 812806-5 (2011).
[CrossRef]

Other

Sony, http://pro.sony.com/bbsccms/assets/files/mkt/indauto/manuals/FCB-EX480C_EX48C_Technical_Manual.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Radiation distributions of the IR-illuminator.

Fig. 2
Fig. 2

The view angles versus distance of the IR-illuminator and the camera.

Fig. 3
Fig. 3

Two dimensional structure of the proposed TIR lens.

Fig. 4
Fig. 4

(a) Front view of and (b) side view of the novel TIR lens.

Fig. 5
Fig. 5

(a) Simulation irradiance map; (b) experimental irradiance map; (c) comparison of the irradiance distribution between simulation and experiment with view angle of 50°.

Fig. 6
Fig. 6

(a) Simulation irradiance map; (b) experimental irradiance map; (c) comparison of the irradiance distribution between simulation and experiment with view angle of 22°.

Fig. 7
Fig. 7

(a) Simulation irradiance map; (b) experimental irradiance map; (c) comparison of the irradiance distribution between simulation and experiment with view angle of 7.5°.

Tables (2)

Tables Icon

Table 1 Parameters of the Novel TIR Lens

Tables Icon

Table 2 Comparison between the Novel TIR Lens and Traditional Structure

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E= W t / (π D IR 2 tan 2 (α/2 ))
E E m
W t / (π D IR 2 tan 2 (α/2 )) E m
h 2× D c ×tan(β/2 ) η
I(φ)=cosφ
ϕ s (φ)= I(φ) dw=π sin 2 φ
ϕ refract ( φ r )=π sin 2 φ r , φ r [ 0, φ c ]
ϕ TIR ( φ TIR )=π( sin 2 φ b sin 2 φ TIR ), φ TIR [ φ a , φ b ]
I(γ)= I 0 cos 3 (γ)
ϕ t (γ)= I 0 π(1/ cos 2 γ1 ),γ[ 0, α m 2 ]
ϕ t (γ)= ϕ refract ( φ r )+ ϕ TIR ( φ TIR )
φ TIR =arcsin( ( sin 2 φ r + sin 2 φ b ) I 0 (1/ cos 2 γ1 ) )

Metrics