Abstract

This paper discusses a theoretical approach towards synthesizing broadband circularly polarizing reflectors. The broadband polarizing reflectors consist of birefringent metallo-dielectric metasurfaces which are described by the Jones matrices and verified via full-wave simulations. Specifically, full-wave simulations for candidate designs are presented that target operation in the near infrared band. In addition, reconfigurability is introduced and demonstrated for candidate designs at the long wave infrared band through the inclusion of a bistable phase change chalcogenide glass substrate.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  4. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
    [CrossRef] [PubMed]
  5. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
    [CrossRef]
  6. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
    [CrossRef]
  7. Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
    [CrossRef]
  8. Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
    [CrossRef]
  9. C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am.31(7), 488–493 (1941).
    [CrossRef]
  10. C. R. Jones, “A new calculus for the treatment of optical systems. VI. Experimental determination of the matrix,” J. Opt. Soc. Am.37(2), 110–112 (1947).
    [CrossRef]
  11. C. R. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matricies,” J. Opt. Soc. Am.38(8), 671–685 (1948).
    [CrossRef]
  12. C. R. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am.46(2), 126–131 (1956).
    [CrossRef]
  13. E. Collett, “Field guide to polarization,” in SPIE Field Guides, J.E. Greivenkamp, ed. (SPIE, 2005), Vol. FG05.
  14. A. A. Maradudin, Structured Surfaces as Optical Metamaterials (Cambridge University Press, 2011).
  15. J. Kong, Electromagnetic Wave Theory (Wiley, 1986).
  16. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  17. E. Plum, Chirality and Metamaterials (Ph.D. Thesis, University of Southampton, 2010).
  18. P. E. Sieber and D. H. Werner, “A reconfigurable near-infrared circularly polarizing reflector based on phase changing anisotropic metamaterials,” Proceedings of the International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (IEEE, 2012), IF54.2.
  19. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
    [CrossRef]
  20. N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009).
    [CrossRef]
  21. T. H. Hand, Design and Applications of Frequency Tunable and Reconfigurable Metamaterials. (Ph.D. Thesis, Duke University, 2009).
  22. C. H. Papas, Theory of Electromagnetic Wave Propagation (McGraw-Hill, 1965).
  23. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
  24. D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antenn. Propag.13(1), 3–7 (1965).
    [CrossRef]
  25. K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002).
    [CrossRef]
  26. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).
  27. J. M. Hao, and Lei Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method,” Phys. Rev. B77, 094201, 1–12 (2008).
  28. J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009).
    [CrossRef] [PubMed]
  29. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
    [CrossRef] [PubMed]
  30. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
    [CrossRef]
  31. M. Liu, Y. Zhang, X. Wang, and C. Jin, “Incident-angle-insensitive and polarization independent polarization rotator,” Opt. Express18(11), 11990–12001 (2010).
    [CrossRef] [PubMed]
  32. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
    [CrossRef]
  33. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
    [CrossRef] [PubMed]
  34. E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
    [CrossRef]
  35. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
    [CrossRef]
  36. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  37. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
    [CrossRef]
  38. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
    [CrossRef]
  39. W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
    [CrossRef]
  40. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
    [CrossRef] [PubMed]
  41. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
    [CrossRef] [PubMed]
  42. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  43. D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
    [CrossRef]

2012

Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
[CrossRef]

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

2011

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
[CrossRef]

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

2010

M. Liu, Y. Zhang, X. Wang, and C. Jin, “Incident-angle-insensitive and polarization independent polarization rotator,” Opt. Express18(11), 11990–12001 (2010).
[CrossRef] [PubMed]

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

2009

2008

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

J. M. Hao, and Lei Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method,” Phys. Rev. B77, 094201, 1–12 (2008).

2007

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

2006

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2002

K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002).
[CrossRef]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

1965

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antenn. Propag.13(1), 3–7 (1965).
[CrossRef]

1956

1948

1947

1941

Abbott, D.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Al-Joumayly, M.

N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009).
[CrossRef]

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Atwater, H. A.

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Aydin, K.

Azad, A. K.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Behdad, N.

N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009).
[CrossRef]

Bossard, J. A.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Boyd, E. M.

Cahill, R.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Chen, H.-T.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Chin, J. Y.

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

Cui, T. J.

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Dicken, M. J.

Dickie, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Doumanis, E.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

Euler, M.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Fan, K.

Feng, Y.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Fumeaux, C.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Fusco, V.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Gollub, J. N.

Gomez-Tornero, J. L.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Goussetis, G.

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

Gregory, M. D.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
[CrossRef]

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Hao, J. M.

J. M. Hao, and Lei Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method,” Phys. Rev. B77, 094201, 1–12 (2008).

Harrison, C.

He, Q.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Huang, C.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Huang, X.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Jiang, T.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Jiang, Z. H.

Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
[CrossRef]

Jin, C.

Johnson, J. D.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Jones, C. R.

Karkkainen, K.

K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002).
[CrossRef]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Lerner, D. S.

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antenn. Propag.13(1), 3–7 (1965).
[CrossRef]

Lier, E.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Liu, M.

Liu, R. P.

Ma, J.

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

Mayer, T. S.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Mock, J. J.

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Muise, R.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Musgraves, J. D.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

O'Hara, J. F.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Pilon, D. V.

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Podraza, N.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Pogrebnyakov, A.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Pryce, I. M.

Qiu, M.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Richardson, K.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Rivero-Baleine, C.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rogers, S.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Salehi, M.

N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009).
[CrossRef]

Scarborough, C. P.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Shin, H. J.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Smith, D. R.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Strikwerda, A. C.

Stuchly, M.

K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002).
[CrossRef]

Sun, W.

Sweatlock, L. A.

Tao, H.

Taylor, A. J.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Turpin, J.

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Walavalkar, S.

Wang, X.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

M. Liu, Y. Zhang, X. Wang, and C. Jin, “Incident-angle-insensitive and polarization independent polarization rotator,” Opt. Express18(11), 11990–12001 (2010).
[CrossRef] [PubMed]

Werner, D. H.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
[CrossRef]

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Wu, Q.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
[CrossRef]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Zhang, X.

Zhang, Y.

Zhao, J.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Zheludev, N. I.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Zhu, B.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett.97(5), 051906 (2010).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-LC resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett.10, 577–580 (2011).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “A broadband monopole antenna enabled by an ultra-thin anisotropic metamaterial coating,” IEEE Antennas Wirel. Propag. Lett.10, 1543–1546 (2011).
[CrossRef]

IEEE Trans. Antenn. Propag.

Q. Wu, C. P. Scarborough, D. H. Werner, E. Lier, and X. Wang, “Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics,” IEEE Trans. Antenn. Propag.60(8), 3594–3604 (2012).
[CrossRef]

E. Doumanis, G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, “Anisotropic impedance surfaces for linear to circular polarization conversion,” IEEE Trans. Antenn. Propag.60(1), 212–219 (2012).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

N. Behdad, M. Al-Joumayly, and M. Salehi, “A low-profile third-order bandpass frequency selective surface,” IEEE Trans. Antenn. Propag.57(2), 460–466 (2009).
[CrossRef]

D. S. Lerner, “A wave polarization converter for circular polarization,” IEEE Trans. Antenn. Propag.13(1), 3–7 (1965).
[CrossRef]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization converter,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Opt. Soc. Am.

Nano Lett.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Nat. Mater.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Nat. Photonics

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Nature

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Commun.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Phys. Rev. B

Z. H. Jiang, Q. Wu, and D. H. Werner, “Demonstration of enhanced broadband unidirectional electromagnetic radiation enabled by a subwavelength profile leaky anisotropic zero-index metamaterial coating,” Phys. Rev. B86(12), 125131 (2012).
[CrossRef]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B84(16), 165111 (2011).
[CrossRef]

J. M. Hao, and Lei Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method,” Phys. Rev. B77, 094201, 1–12 (2008).

Phys. Rev. Lett

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908, 1–4 (2007).

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

Proc. Inst. Elect Eng. Microw. Antennas Propag.

K. Karkkainen and M. Stuchly, “Frequency selective surface as a polarization transformer,” Proc. Inst. Elect Eng. Microw. Antennas Propag.149(5-6), 248–252 (2002).
[CrossRef]

Proc. SPIE

D. H. Werner, T. S. Mayer, C. Rivero-Baleine, N. Podraza, K. Richardson, J. Turpin, A. Pogrebnyakov, J. D. Musgraves, J. A. Bossard, H. J. Shin, R. Muise, S. Rogers, and J. D. Johnson, “Adaptive phase change metamaterials for infrared aperture control,” Proc. SPIE8165, 1–9 (2011).
[CrossRef]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Other

T. H. Hand, Design and Applications of Frequency Tunable and Reconfigurable Metamaterials. (Ph.D. Thesis, Duke University, 2009).

C. H. Papas, Theory of Electromagnetic Wave Propagation (McGraw-Hill, 1965).

B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).

E. Collett, “Field guide to polarization,” in SPIE Field Guides, J.E. Greivenkamp, ed. (SPIE, 2005), Vol. FG05.

A. A. Maradudin, Structured Surfaces as Optical Metamaterials (Cambridge University Press, 2011).

J. Kong, Electromagnetic Wave Theory (Wiley, 1986).

V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

E. Plum, Chirality and Metamaterials (Ph.D. Thesis, University of Southampton, 2010).

P. E. Sieber and D. H. Werner, “A reconfigurable near-infrared circularly polarizing reflector based on phase changing anisotropic metamaterials,” Proceedings of the International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (IEEE, 2012), IF54.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering matrices for opposite angles and directions of incidence.

Fig. 2
Fig. 2

Birefringent metamaterial scattered field handedness, amplitude, and propagation direction with a linearly polarized incident field for the condition of circular polarization.

Fig. 3
Fig. 3

Birefringent metasurface scattered field handedness, amplitude, and propagation direction with a linearly polarized incident field for the condition of circular polarization.

Fig. 4
Fig. 4

Full wave simulation of periodic and grounded metallo-dielectric structures with response represented in the I and V Stokes parameter for normal incidence and oblique angles. (a) 2D periodic capacitively end-loaded dipole. (b) 2D periodic split ring.

Fig. 5
Fig. 5

Full wave simulations depicted by different metrics for the periodic SR structure depicted in Fig. 4(b). (a-d) Horizontally polarized incident wave reflection expressed in terms of phase axial ratio and polarization conversion ratio respectively.

Fig. 6
Fig. 6

Full wave simulations depicted by different metrics for the periodic SR structure depicted in Fig. 4(b). (a) Horizontally polarized incident wave reflection expressed in terms of the complete Stokes parameters. (b) The Stokes parameters for reflection of 45° rotated SR geometry as a function of incident linearly polarized wave azimuthal rotation.

Fig. 7
Fig. 7

Full wave simulation of periodic and grounded metallo-dielectric structures with response represented in the I and V Stokes parameters for normal incidence and oblique angles. (a) 2D periodic end-loaded dipole. (b) 2D periodic meander line. (c) 2D periodic split ring. (d) Reconfigurable polarization response of the split ring design as a function of the GST substrate material phase.

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

t ( θ )=( a+1 b c d+1 )
r ( θ )=( c d a b )
s ( θ )=( a b c d ).
s ( θ )=( d c b a ).
s ++ ( θ )= s ( θ ) and  s ( θ )= s ++ ( θ ),
s + ( θ )= s + ( θ ) and  s + ( θ )= s + ( θ ),
s ij = s ji ,
s ++ ( θ )= s ++ ( θ ) and  s ( θ )= s ( θ ),
s + ( θ )= s + ( θ ) and  s + ( θ )= s + ( θ ),
ε ¯ ¯ = ε ¯ ¯ T ,
μ ¯ ¯ = μ ¯ ¯ T .
ξ ¯ ¯ = ζ ¯ ¯ T .
ξ ¯ ¯ =( χ ¯ ¯ j κ ¯ ¯ ) μ 0 ε 0 ,
ζ ¯ ¯ =( χ ¯ ¯ +j κ ¯ ¯ ) μ 0 ε 0 .
det( a λ s b c d λ s )=( a λ s )( d λ s )bc=0
λ 1,2 s = a+d 2 ± ( ad 2 ) 2 +bc.
λ 1,2 s =a±| b | e iθ .
ρ s =2 tan 1 | b a |,
S=a= cos 2 ( ρ s 2 ),
| a+ 1 2 |=| d+ 1 2 | 1 2 ,
| b |=| c | 1 2 ,
| a+ 1 2 | 2 + | b | 2 = ( 1 2 ) 2 .
λ 1,2 s = 1 2 ( 1± e iθ ).
b= c * .
s ( θ )= 1 2 ( 1 e iδ e ±iδ 1 ).
s ( θ,φ )= 1 2 ( 1 e i2φ e ±i2φ 1 ).
E inc = E 0 ( cos φ x sin φ x ) e i( kzωt ) ,
E inc =( 1 0 ).
E r = 1 2 ( e ±i π 2 1 1 e i π 2 )( 1 0 )= 1 2 ( ±i 1 )= 2 2 E
E t = 1 2 ( 1 e i π 2 e ±i π 2 1 )( 1 0 )= 1 2 ( 1 ±i )= 2 2 E .
ε ¯ ¯ = ε 0 ( 1 0 0 1 ).
η ¯ ¯ ( ω 0 ±Δ )= η 0 ( i 0 0 1 ).
η ¯ ¯ ( ω 0 ±Δ )= η 0 ( i 0 0 0 ).
E t = 1 4 ( 1 e ±i( π 2 +π ) e i( π 2 +π ) 1 )( 1 i )= 1 2 ( 1 i )= 2 2 E .
E r = 1 2 ( ±i 1 )+ 1 2 ( 1 i )= 2 2 ( e ±i 3π 2 e ±i 5π 2 )= 2 2 ( 1 ±i )= E .
r m ( φ )=R( φ )NR( φ ).
R( φ )=( cosφ sinφ sinφ cosφ ).
N=( r x 0 0 r y ).
N=( i 0 0 1 ).
r m ( θ,φ )=R( φ )( i 0 0 1 )R( φ ).
ε r ' ( ω )=1+ 2 π 0 ω ' ε r " ( ω ' ) ( ω ' ) 2 ω 2 d ω ' ,
ε r " ( ω )= 2ω π 0 1 ε r ' ( ω ' ) ( ω ' ) 2 ω 2 d ω ' ,
N( ω )=( e i( 5π 4 + δ 1 ( ω ) ) 0 0 e i( 3π 4 + δ 2 ( ω ) ) ).
δ 1,2 ( ω 0 )=0
δ 1 ( ω 1 ) π 4 ,
δ 2 ( ω 2 ) π 4 .
r m ( θ,φ,ω )=R( φ )( i 0 0 1 )R( φ ).
E r ( θ,ω )=( e i 3π 4 e i( π 4 +n π 2 ) e i( π 4 +n π 2 ) e i 3π 4 )( 1 0 )=( i e inπ )= E ( θ,ω ).
I= | E x | 2 + | E y | 2 ,
Q= | E x | 2 | E y | 2 ,
U=2Re( E x E y * ),
V=2Im( E x E y * ),

Metrics