Abstract

A three-layered Ag−low-permittivity (LP)−high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag−LP−HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag−LP−HP nanoshells. Especially, the modulation of the middle LP layer can move the negative refractive index range into the visible region. Because the responses arise from the each meta-atom, the metamaterial is intrinsically isotropic and polarization independent. It is further found with the increase of the LP layer thickness that the negative refractive index range of the random arrangement shows a large blue-shift and becomes narrow. With the decrease of the filling fraction, the negative refractive index range shows a blue-shift and becomes narrow while the maximum of the negative refractive index decreases.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  2. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
    [Crossref] [PubMed]
  3. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  8. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, 2007).
  9. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
    [Crossref]
  10. S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34(22), 3478–3480 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3478 .
    [Crossref] [PubMed]
  11. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
    [Crossref] [PubMed]
  12. F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 .
    [Crossref] [PubMed]
  13. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
    [Crossref] [PubMed]
  14. B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
    [Crossref]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  18. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  19. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  20. D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
    [Crossref]
  21. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
    [Crossref] [PubMed]
  22. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  23. A. K. Kodali, M. V. Schulmerich, R. Palekar, X. Llora, R. Bhargava, and A. K, “Optimized nanospherical layered alternating metal-dielectric probes for optical sensing,” Opt. Express 18(22), 23302–23313 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23302 .
    [Crossref] [PubMed]
  24. Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref] [PubMed]
  25. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
    [Crossref]
  26. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref] [PubMed]
  27. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
    [Crossref]
  28. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
    [Crossref]
  29. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
    [Crossref]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  32. D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
    [Crossref] [PubMed]
  33. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
    [Crossref]
  34. E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
    [Crossref]
  35. E. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  36. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  37. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
    [Crossref] [PubMed]
  38. W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
    [Crossref] [PubMed]
  39. M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
    [Crossref]

2012 (5)

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

2011 (5)

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

2010 (9)

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

A. K. Kodali, M. V. Schulmerich, R. Palekar, X. Llora, R. Bhargava, and A. K, “Optimized nanospherical layered alternating metal-dielectric probes for optical sensing,” Opt. Express 18(22), 23302–23313 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23302 .
[Crossref] [PubMed]

2009 (5)

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
[Crossref]

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 .
[Crossref] [PubMed]

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34(22), 3478–3480 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3478 .
[Crossref] [PubMed]

2008 (2)

D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

2007 (3)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

2006 (1)

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
[Crossref]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
[Crossref]

1999 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
[Crossref]

Aslan, K.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Averitt, R. D.

Bardhan, R.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bhargava, R.

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, J. I. L.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

Chettiar, U. K.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Drachev, V. P.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Fan, S. H.

Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 .
[Crossref] [PubMed]

Geddes, C. D.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

Golmayo, D.

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
[Crossref]

Gu, B. H.

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Güney, D. Ö.

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

Halas, N. J.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1824–1832 (1999).
[Crossref]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Ibisate, M.

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kante, B.

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

Kildishev, A. V.

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

Kodali, A. K.

Koschny, T.

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

Lakowicz, J. R.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

Lee, A.

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Levit, S. D.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Li, Z. P.

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

Liu, X. J.

D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Llora, X.

López, C.

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
[Crossref]

López-Tejeira, F.

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

Luk’yanchuk, B.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Maier, S. A.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Marqués, R.

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 .
[Crossref] [PubMed]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 .
[Crossref] [PubMed]

Mirin, N. A.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
[Crossref]

Mukherjee, S.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

Niv, A.

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

Nordlander, P.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
[Crossref]

O’Brien, K.

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

Ortuño, R.

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Ozin, G. A.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

Palekar, R.

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Rodríguez-Fortuño, F. J.

Ruan, Z. C.

Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schulmerich, M. V.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34(22), 3478–3480 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3478 .
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Soukoulis, C. M.

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Wang, W.

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

Westcott, S. L.

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, D. J.

D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Wu, M.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

Xiao, S. M.

Xu, H. X.

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Xu, X. D.

D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

Yin, X. B.

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Zhang, X.

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, Z. Y.

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

ACS Nano (3)

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano 6(1), 837–842 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.) 21(28), 2899–2902 (2009).
[Crossref]

Chem. Phys. Lett. (1)

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360(3-4), 325–332 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[Crossref] [PubMed]

J. Chem. Phys. (1)

D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys. 129(7), 074711 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010).
[Crossref]

Nano Lett. (1)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nat. Mater. (3)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys. 13(12), 123017 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (7)

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006).
[Crossref]

B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B 85(4), 041103 (2012).
[Crossref]

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B 86(8), 081407 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Phys. Rev. Lett. (2)

Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Science (5)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science 330(6011), 1633–1634 (2010).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, 2007).

E. Palik, Handbook of Optical Constant of Solids (Academic, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry of a three-layered Ag-LP-HP nanoshell.

Fig. 2
Fig. 2

(a) Scattering spectra, (b) electric polarizability, and (c) magnetic polarizability of the Ag−Si nanoshell. Here the radii of Ag core and Si shell r1 and r2 are fixed at 35 and 148.5 nm, respectively.

Fig. 3
Fig. 3

(a) The electric and (b) magnetic contributions to the scattering spectra of the Ag-SiO2-Si nanoshells. Here the radii of the Ag core and outer Si shell r1 and r3 are fixed at 35 and 148.5 nm respectively. The solid, dashed, dotted and dash-dot lines represent the scattering spectra for the nanoshells with the middle layer thicknesses (r2r1) of 0, 1, 3, and 5 nm, respectively.

Fig. 4
Fig. 4

Dielectric permittivity of Si with wavelength below 800 nm cited from Refs [35]. and [36].

Fig. 5
Fig. 5

Contour plots of the (a) electric and (b) magnetic contributions to the scattering spectra of the Ag-SiO2-Si nanoshells as a function of r3-values. (c) Total scattering spectra of the Ag-SiO2-Si nanoshells as a function of r3-values. Here the radius of Ag core and the thickness of SiO2 layer are fixed at 35 and 5 nm, respectively.

Fig. 6
Fig. 6

(a) Scattering spectra of the Ag−SiO2−Si nanoshells. (b) Electric and (c) magnetic polarizabilities of the Ag−SiO2−Si nanoshell as a function of wavelengths. (d) Effective permittivity, (e) permeability and (f) refractive index of the random arrangement of Ag−SiO2−Si nanoshells as a function of wavelengths. Here r1, r2, and r3 are fixed at 35, 40, and 91 nm, respectively. The filling fraction f is fixed at 0.5.

Fig. 7
Fig. 7

Contour plot of the real part of the effective refractive index for the random arrangement as a function of the wavelengths and the f-values. Here r1, r2, and r3 are fixed at 35, 40, and 91 nm, respectively.

Fig. 8
Fig. 8

Real part of the effective refractive index for the random arrangement of (a) Ag−SiO2−Si and (b) Ag−LP−Si (ε2 = 1) as a function of wavelengths. The dashed lines depict the corresponding FOMs. The black, blue, and red lines show the variations with the various middle layer thicknesses of 5, 8, and 10 nm, respectively. Here the radius of Ag core is fixed at 35 nm and the filling fraction f is fixed at 0.5.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε 1 (ω)=1 ω p 2 ω 2 +iωγ + χ ,
γ= γ f +A V f a ,
Q sca = 2 (k r 3 ) 2 l=1 (2l+1)( | a l | 2 + | b l | 2 ) .
μ eff μ 0 μ eff +2 μ 0 =f α M 4π r 3 3 ,
ε eff ε 4 ε eff +2 ε 4 =f α E 4π r 3 3 ,
f=N 4 3 π r 3 3 .

Metrics