Abstract

Using the enormous magnetic field gradients present near the surface of magnetic recording media, we assemble diffraction gratings with lines consisting entirely of self-assembled magnetic nanoparticles that are transferred to flexible polymer thin films. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. This manufacturing approach offers a low-cost alternative for realizing concave gratings and more complex optical materials assembled with single-nanometer precision.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kneubühl, “Diffraction grating spectroscopy,” Appl. Opt.8, 505–519 (1969).
    [CrossRef] [PubMed]
  2. T. M. Hard, “Laser wavelength selection and output coupling by a grating,” Appl. Opt.9, 1825–1830 (1970).
    [CrossRef] [PubMed]
  3. C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002).
    [CrossRef]
  4. J. McMullin, R. DeCorby, and C. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20, 758 –765 (2002).
    [CrossRef]
  5. G. R. Harrison, “The production of diffraction gratings i. development of the ruling art,” J. Opt. Soc. Am.39, 413–426 (1949).
    [CrossRef]
  6. T. Namioka and M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt.34, 2180–2186 (1995).
    [CrossRef] [PubMed]
  7. M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
    [CrossRef]
  8. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13, 3079–3086 (2005).
    [CrossRef] [PubMed]
  9. L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
    [CrossRef]
  10. W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
    [CrossRef]
  11. H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
    [CrossRef] [PubMed]
  12. S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
    [CrossRef]
  13. Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, and H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express14, 5755–5764 (2006).
    [CrossRef] [PubMed]
  14. I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008).
    [CrossRef] [PubMed]
  15. J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
    [CrossRef] [PubMed]
  16. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, 1999), 1st ed.
  17. M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
    [CrossRef]
  18. J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
    [CrossRef]
  19. J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
    [CrossRef]
  20. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.
  21. E. G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am.68, 496–502 (1978).
    [CrossRef]
  22. F. L. O. Wadsworth, “The modern spectroscope.xv. on the use and mounting of the concave grating as an analyzing or direct comparison spectroscope,” Astrophys. J.3, 47 (1896).
    [CrossRef]
  23. M. Duban, “Improved wadsworth mounting with aspherical holographic grating,” Appl. Opt.19, 2488–2489 (1980).
    [CrossRef] [PubMed]
  24. T. Namioka, “Theory of the concave grating.” J. Opt. Soc. Am.49, 446–460 (1959).
    [CrossRef]
  25. T. Namioka, “Theory of the concave grating. iii. seya-namioka monochromator,” J. Opt. Soc. Am.49, 951–959 (1959).
    [CrossRef]
  26. A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the czerny-turner spectrometer,” J. Opt. Soc. Am.54, 879–886 (1964).
    [CrossRef]
  27. W. G. Fastie, “A small plane grating monochromator,” J. Opt. Soc. Am.42, 641–647 (1952).
    [CrossRef]
  28. R. Masters, C. Hsiech, and H. L. Pardue, “Advantages of an off-littrow mounting of an echelle grating,” Appl. Opt.27, 3895–3897 (1988).
    [CrossRef] [PubMed]
  29. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), 6th ed.
  30. H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, 2009), chap. 3.
    [CrossRef]
  31. Y. Dong, L. Chen, and X. Bao, “Characterization of the brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express18, 18960–18967 (2010).
    [CrossRef] [PubMed]

2012 (2)

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

2010 (1)

2009 (1)

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

2008 (3)

I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008).
[CrossRef] [PubMed]

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

2006 (1)

2005 (1)

2002 (2)

J. McMullin, R. DeCorby, and C. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20, 758 –765 (2002).
[CrossRef]

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002).
[CrossRef]

2001 (1)

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

2000 (1)

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

1995 (1)

1988 (1)

1983 (1)

M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
[CrossRef]

1980 (1)

1978 (1)

1970 (1)

1969 (1)

1964 (1)

1959 (2)

1952 (1)

1949 (1)

1896 (1)

F. L. O. Wadsworth, “The modern spectroscope.xv. on the use and mounting of the concave grating as an analyzing or direct comparison spectroscope,” Astrophys. J.3, 47 (1896).
[CrossRef]

Bao, X.

Best, M. E.

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

Binek, C.

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

Bliznyuk, V. N.

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

Cakmaktepe, S.

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

Chakarov, D.

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Chen, L.

Cheng, W.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Chou, S. Y.

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

Chung, W.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Corn, R. M.

I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008).
[CrossRef] [PubMed]

Crawford, T. M.

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

DeCorby, R.

Dong, Y.

Droppleman, L.

Duban, M.

Eurenius, L.

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Fastie, W. G.

Freeman, D.

Friedlaender, F. J.

M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
[CrossRef]

Gerber, R.

M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
[CrossRef]

Hagglund, C.

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Hampp, N. A.

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

Hard, T. M.

Harrison, G. R.

Haugen, C.

Henderson, J.

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

Hillebrecht, P.

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

Hsiech, C.

Hung, W.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Jiang, I.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Kasemo, B.

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Kim, H.

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

Kneubühl, F.

Koike, M.

Kunze, H.-J.

H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, 2009), chap. 3.
[CrossRef]

Lanni, F.

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

Li, M.

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

Lim, J.

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

Loewen, E.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), 6th ed.

Loewen, E. G.

Lohau, J.

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

Luther-Davies, B.

Madden, S.

Majetich, S. A.

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

Masters, R.

Maystre, D.

McMullin, J.

Megill, L. R.

Moriya, N.

Moser, A.

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

Namioka, T.

Neilson, D. T.

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002).
[CrossRef]

Nevière, M.

Olsson, E.

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Palmer, C.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), 6th ed.

Pardue, H. L.

Pedrotti, F. L.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.

Pedrotti, L. M.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.

Pedrotti, L. S.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.

Reinhardt, H.

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

Rettner, C. T.

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

Sendroiu, I. E.

I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008).
[CrossRef] [PubMed]

Shafer, A. B.

Shi, S.

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

Shimaoka, H.

Singamaneni, S.

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

Takayasu, M.

M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
[CrossRef]

Tan, D. X.

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

Taratorin, A. M.

S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, 1999), 1st ed.

Terris, B. D.

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

Tilton, R. D.

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

Totoki, S.

Tsai, M.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Tsunazawa, Y.

Tsymbal, E. Y.

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

Wada, Y.

Wadsworth, F. L. O.

F. L. O. Wadsworth, “The modern spectroscope.xv. on the use and mounting of the concave grating as an analyzing or direct comparison spectroscope,” Astrophys. J.3, 47 (1896).
[CrossRef]

Wang, J.

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

Wang, S. X.

S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, 1999), 1st ed.

Watanabe, M.

Yeh, P.

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Yu, C. X.

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002).
[CrossRef]

Zhuang, L.

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

Adv. Mater. (1)

H. Kim, H. Reinhardt, P. Hillebrecht, and N. A. Hampp, “Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures,” Adv. Mater.24, 1994–1998 (2012).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,” Appl. Phys. Lett.76, 673–675 (2000).
[CrossRef]

J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, “Writing and reading perpendicular magnetic recording media patterned by a focused ion beam,” Appl. Phys. Lett.78, 990–992 (2001).
[CrossRef]

W. Hung, W. Cheng, M. Tsai, W. Chung, I. Jiang, and P. Yeh, “Laser pulse induced gold nanoparticle gratings,” Appl. Phys. Lett.93, 061109 (2008).
[CrossRef]

Astrophys. J. (1)

F. L. O. Wadsworth, “The modern spectroscope.xv. on the use and mounting of the concave grating as an analyzing or direct comparison spectroscope,” Astrophys. J.3, 47 (1896).
[CrossRef]

Biointerphases (1)

I. E. Sendroiu and R. M. Corn, “Nanoparticle diffraction gratings for DNA detection on photopatterned glass substrates,” Biointerphases3, FD23–FD29 (2008).
[CrossRef] [PubMed]

IEEE Trans. Magn. (1)

M. Takayasu, R. Gerber, and F. J. Friedlaender, “Magnetic separation of sub-micron particles,” IEEE Trans. Magn.19, 2112–2114 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. Magn. Magn. Mater. (1)

J. Lim, D. X. Tan, F. Lanni, R. D. Tilton, and S. A. Majetich, “Optical imaging and magnetophoresis of nanorods,” J. Magn. Magn. Mater.321, 1557–1562 (2009).
[CrossRef]

J. Mater. Chem. (1)

S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” J. Mater. Chem.21, 16819–16845 (2011).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Sel. Topics in Quantum Electron. (1)

C. X. Yu and D. T. Neilson, “Diffraction-grating-based (de)multiplexer using image plane transformations,” J. Sel. Topics in Quantum Electron.8, 1194 – 1201 (2002).
[CrossRef]

Nanotechnology (1)

J. Henderson, S. Shi, S. Cakmaktepe, and T. M. Crawford, “Pattern transfer nanomanufacturing using magnetic recording for programmed nanoparticle assembly,” Nanotechnology23, 185304 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Eurenius, C. Hagglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes,” Nat. Photonics2, 360–364 (2008).
[CrossRef]

Opt. Express (3)

Other (4)

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005), 6th ed.

H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, 2009), chap. 3.
[CrossRef]

S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology (Academic Press, 1999), 1st ed.

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Prentice Hall, 2007), 3rd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diffraction grating nanomanufacturing using programmable magnetic recording and pattern transfer. (a)–(d) Schematic diagrams showing entire nanomanufacturing process. Gray ellipses: projections of coupons. Parallelograms: projections of magnetized regions on coupons and arrows enclosed denote magnetization directions. T: magnetic transition. Black dots: superparamagnetic nanoparticles. Yellow ellipses: projections of polymer thin films. (e) Dark-field optical image of nanoparticle arrays assembled on a coupon. (f) Polymer film containing patterned nanoparticles after peeling. (g) Dark-field optical image of the black square in (f) showing the assembled nanoparticle grating lines embedded in the polymer film.

Fig. 2
Fig. 2

Spectral measurements and calibration of a nanomanufactured diffraction grating in reflection mode. (a) Left panel: schematic diagram of polymer diffraction grating (DG) in front view. Right panel: schematic diagram of the measurement apparatus in top view. Light illuminates DG center (O) at normal incidence and diffraction spectra are recorded using a line camera (LC) in reflection mode. Red (green and blue) solid lines depict the diffracted red (green and blue) beam. (b) Diffraction spectra of 405 nm, 532 nm and 632 nm lasers that are used to calibrate the diffraction grating spectrum (LC is at x = 4.0 mm and y = 13.7 mm). Top axis denotes LC pixel positions, and bottom axis calibrated to yield wavelength in nm. (c) Solid line: diffraction spectrum for a tungsten-halogen bulb measured with a 1.1 μm thick grating. Dotted line: diffraction spectrum for the tungsten-halogen bulb measured with a commercial spectrometer. Inset: photograph of tungsten-halogen spectrum measured with the 1.1 μm thick grating.

Fig. 3
Fig. 3

Curvature inherent in our nanomanufactured concave gratings. (a) 532 nm diffraction spectra recorded while translating the LC in the y direction demonstrate changes in both peak intensity x-position (bottom axis) and width (corresponding y positions in millimeters are shown above each peak). (b) Schematic diagram of an optical system showing image formation with a concave grating. (c) Red, green and blue dots (crosses and triangles) show focal positions for 632 nm, 532 nm and 405 nm lasers respectively. Polymer film thicknesses are indicated in the legend. Three solid lines show fitted trajectories of focal positions for the three grating thicknesses with fitted radii of curvature, R, as indicated. Red (green and blue) dashed lines display linear fits of diffraction angles for the 632, 532, and 405 nm lasers. Inset: R vs grating thickness.

Fig. 4
Fig. 4

Repeatability of tungsten-halogen spectra. (a) Tungsten-halogen spectra obtained from 5 nominally identical 1.1 μm thick concave gratings. All spectra have 5 peaks and show similar spectral peak positions, demonstrating the high repeatability of tungsten-halogen spectra. (b)–(f) 10 nm peak-peak dot plot showing fitted peak positions for 5 gratings, demonstrating ∼ 3 nm average standard deviation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ = L δ N N 2 ,
tan β = Δ y Δ x = y x .
d ( sin α + sin β ) = m λ ,
F = < A P > + < P B > + m w λ d ,
F w = 0 .
y = R sin β cos 2 β 1 + cos β ,
B S = P F W S ,
B S = d W S cos β sin β m R .

Metrics