Abstract

Novel fabrication, detection and analysis approaches were employed to experimentally demonstrate scattering reduction by a plasmonic nanostructure operating at 1550 nm. The nanostructure consisted of a silicon nanorod surrounded by a plasmonic metamaterial cover comprised of eight gold nanowires and was fabricated by a combination of electron beam lithography, focused ion beam milling and dry and wet etching. The optical standing wave pattern of the device in the near-field was obtained using heterodyne near-field scanning optical microscopy. It was found that the spatial curvature of the interference fringes of the optical standing wave pattern was directly related to the scattering reduction of the device. The experiments were in excellent agreement with the theoretical predictions and suggested that the device reduced the scattering by 9.5 dB when compared to a bare silicon nanorod of diameter 240 nm and by 6 dB when compared to a bare silicon nanorod of diameter 160 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
    [CrossRef] [PubMed]
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
    [CrossRef]
  6. V. A. Tamma, J. Blair, C. J. Summers, and W. Park, “Dispersion characteristics of silicon nanorod based carpet cloaks,” Opt. Express18(25), 25746–25756 (2010).
    [CrossRef] [PubMed]
  7. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am.65(4), 376–379 (1975).
    [CrossRef]
  8. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
    [CrossRef] [PubMed]
  9. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
    [CrossRef]
  10. P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
    [CrossRef]
  11. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006).
    [CrossRef]
  12. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15(10), 6314–6323 (2007).
    [CrossRef] [PubMed]
  13. A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express15(12), 7578–7590 (2007).
    [CrossRef] [PubMed]
  14. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
    [CrossRef] [PubMed]
  15. E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
    [CrossRef]
  16. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
    [CrossRef] [PubMed]
  17. M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
    [CrossRef]
  18. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
    [CrossRef] [PubMed]
  19. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010).
    [CrossRef] [PubMed]
  20. F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning optical microscopy tips,” Opt. Lett.36(2), 211–213 (2011).
    [CrossRef] [PubMed]
  21. S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
    [CrossRef]
  22. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007).
    [CrossRef] [PubMed]
  23. M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
    [CrossRef]
  24. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
    [CrossRef]
  25. F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
    [CrossRef]
  26. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36(23), 4479–4481 (2011).
    [CrossRef] [PubMed]
  27. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
    [CrossRef]
  28. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
    [CrossRef]
  29. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
    [CrossRef] [PubMed]
  30. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
    [CrossRef]
  31. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
    [CrossRef]
  32. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
    [CrossRef]
  33. R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
    [CrossRef]
  34. P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
    [CrossRef]
  35. N. Tsumori, M. Takahashi, Y. Sakuma, and T. Saiki, “Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths,” Appl. Opt.50(29), 5710–5713 (2011).
    [CrossRef] [PubMed]
  36. T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
    [CrossRef]
  37. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Characterizing whispering-gallery modes in microspheres by direct observation of the optical standing-wave pattern in the near field,” Opt. Lett.21(10), 698–700 (1996).
    [CrossRef] [PubMed]
  38. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
    [CrossRef] [PubMed]
  39. G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
    [CrossRef]
  40. R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
    [CrossRef]
  41. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002).
    [CrossRef]
  42. E. D. Palik, Handbook of Optical Constants of Solid (Academic, Orlando, Fla., 1985).
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  44. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett.26(4), 208–210 (2001).
    [CrossRef] [PubMed]
  45. D. E. Aspnes, “Local-field effects and effective –medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
    [CrossRef]
  46. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, (Springer, 2010), Chap. 4.

2012 (3)

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

2011 (5)

2010 (6)

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

V. A. Tamma, J. Blair, C. J. Summers, and W. Park, “Dispersion characteristics of silicon nanorod based carpet cloaks,” Opt. Express18(25), 25746–25756 (2010).
[CrossRef] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
[CrossRef]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010).
[CrossRef] [PubMed]

P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010).
[CrossRef] [PubMed]

2009 (5)

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

2008 (6)

M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
[CrossRef]

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
[CrossRef]

2007 (3)

2006 (3)

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

2002 (1)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002).
[CrossRef]

2001 (1)

1999 (3)

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
[CrossRef]

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

1997 (2)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

1996 (1)

1982 (1)

D. E. Aspnes, “Local-field effects and effective –medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

1975 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Afshinmanesh, F.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Alitalo, P.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

Alu, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
[CrossRef]

A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express15(12), 7578–7590 (2007).
[CrossRef] [PubMed]

Alù, A.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

Argyropoulos, C.

E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective –medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36(23), 4479–4481 (2011).
[CrossRef] [PubMed]

F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning optical microscopy tips,” Opt. Lett.36(2), 211–213 (2011).
[CrossRef] [PubMed]

S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
[CrossRef]

Blair, J.

Bongard, F.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

Boreman, G. D.

Botten, L. C.

Brongersma, M. L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Buchler, B. C.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Cao, L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Carminati, R.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
[CrossRef]

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

Chettiar, U. K.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, S. T.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dändliker, R.

Dubreuil, N.

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

Engheta, N.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express15(12), 7578–7590 (2007).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

Erni, D.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Fan, P.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Farhat, M.

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Goldberg, B. B.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Greffet, J.-J.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
[CrossRef]

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

Hao, Y.

E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
[CrossRef]

Harbers, R.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Hare, J.

Haroche, S.

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

Herzig, H. P.

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

Jackel, H.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Jylha, L.

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

Kallos, E.

E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
[CrossRef]

Kaneko, T.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Kerker, M.

Kerkhoff, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

Knight, J. C.

Koenderink, A. F.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Kokobun, Y.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Krenz, P. M.

Lail, B. A.

Lederer, F.

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
[CrossRef]

Lefèvre-Seguin, V.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Little, B. E.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Luukkonen, O.

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

Madrazo, A.

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

Matsuda, N.

T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

McPhedran, R. C.

Melin, K.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

Milton, G. W.

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36(23), 4479–4481 (2011).
[CrossRef] [PubMed]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

Mosig, J.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

Mühlig, S.

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
[CrossRef]

Nesci, A.

Nicorovici, N. A. P.

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006).
[CrossRef]

Nieto-Vesperinas, N.

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

Olmon, R. L.

Pan, W.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Park, W.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Pierini, F.

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002).
[CrossRef]

Raimond, J. M.

Rainwater, D.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

Raschke, M. B.

Robin, F.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Rockstuhl, C.

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
[CrossRef]

Saiki, T.

N. Tsumori, M. Takahashi, Y. Sakuma, and T. Saiki, “Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths,” Appl. Opt.50(29), 5710–5713 (2011).
[CrossRef] [PubMed]

T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

Sakuma, Y.

Sandoghdar, V.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Characterizing whispering-gallery modes in microspheres by direct observation of the optical standing-wave pattern in the near field,” Opt. Lett.21(10), 698–700 (1996).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soric, J. C.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Strasser, P.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Summers, C. J.

Takahashi, M.

Tamma, V. A.

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett.36(23), 4479–4481 (2011).
[CrossRef] [PubMed]

Tretyakov, S. A.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

Tricarico, S.

F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning optical microscopy tips,” Opt. Lett.36(2), 211–213 (2011).
[CrossRef] [PubMed]

S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
[CrossRef]

Tsumori, N.

Ünlü, M. S.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Valle, P. J.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
[CrossRef]

Vander Rhodes, G. H.

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning optical microscopy tips,” Opt. Lett.36(2), 211–213 (2011).
[CrossRef] [PubMed]

S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
[CrossRef]

Venermo, J.

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

Wüest, R.

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zurcher, J.-F.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

Am. J. Phys. (1)

D. E. Aspnes, “Local-field effects and effective –medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

T. Saiki and N. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. A. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett.94(1), 014103 (2009).
[CrossRef]

G. H. Vander Rhodes, B. B. Goldberg, M. S. Ünlü, S. T. Chu, W. Pan, T. Kaneko, Y. Kokobun, and B. E. Little, “Measurement of internal spatial modes and local propagation properties in optical waveguides,” Appl. Phys. Lett.75(16), 2368–2370 (1999).
[CrossRef]

R. Wüest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett.87(26), 261110 (2005).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett.81(7), 1163–1165 (2002).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag.56(2), 416–424 (2008).
[CrossRef]

IEEE Trans. NanoTechnol. (1)

F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical frequencies,” IEEE Trans. NanoTechnol.9(1), 55–61 (2010).
[CrossRef]

J. Appl. Phys. (3)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys.81(6), 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, N. Nieto-Vesperinas, and J.-J. Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys.82(2), 501–509 (1997).
[CrossRef]

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illumination mode scanning near-field optical microscopy,” J. Appl. Phys.86(1), 648–656 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009).
[CrossRef]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

New J. Phys. (2)

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys.14(1), 013054 (2012).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” New J. Phys.10(11), 115035 (2008).
[CrossRef]

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun.285(16), 3412–3418 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (6)

S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nano-particles covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B82(4), 045109 (2010).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B78(7), 075107 (2008).
[CrossRef]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B83(19), 195116 (2011).
[CrossRef]

E. Kallos, C. Argyropoulos, Y. Hao, and A. Alu, “Comparison of frequency responses of cloaking devices under non-monochromatic illumination,” Phys. Rev. B84(4), 045102 (2011).
[CrossRef]

M. G. Silveirinha, A. Alu, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B78(20), 205109 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(2), 026602 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett.103(15), 153901 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. A (1)

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A462(2074), 3027–3059 (2006).
[CrossRef]

Science (2)

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solid (Academic, Orlando, Fla., 1985).

W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, (Springer, 2010), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the entire structure showing the 10 µm wide input waveguide and the scattering reduction device structure located 5 µm from the waveguide edge. The device consisted of a silicon rod surrounded by a gold nanograting structure made of eight equally spaced gold nanowires and both the silicon rod and the gold grating structure were encapsulated in a 20 nm thick layer of silicon dioxide. A 370 nm thick layer of SU8 photoresist was coated over the entire structure and served as the background medium. The legend indicates the materials represented by the various colors.

Fig. 2
Fig. 2

(a) Schematic illustration of the fabrication process of the SR structure. (b) 52˚ tilted view SEM image of the SR structure and flat end silicon input waveguide. (c) High magnification SEM image of FIB milled SR structure in 52˚ tilted view. (d) top view SEM image of the SR structure after FIB milling. (e) top view SEM image of the SR structure after localized silicon dioxide sputtering on the sidewall of the silicon rod.

Fig. 3
Fig. 3

(a) Plots of scattering cross-sections (SCS) (units of meters) in logarithmic scale for the scattering reduction structure with 160 nm silicon rod diameter, 20 nm gold nanowire width and 13 nm gold nanowire thickness and bare rod of diameter 160 nm and 240 nm. Plot of |Ez| field at 1550 nm for (b) SR structure with 160 nm silicon rod diameter, 20 nm gold nanowire width and 13 nm gold nanowire thickness and (c) bare rod of diameter 240 nm showing the fringes caused by interference between incident plane wave and scattered cylindrical wave. Same color scale was used for both (b) and (c).

Fig. 4
Fig. 4

(a) Normalized SCS calculated as a function of cover permittivity (b) Curvature as a function of cover permittivity (c) Normalized SCS (in dB) as a function of fringe curvature showing a direct relationship (d) Schematic showing the location at which curvature values were calculated along the vertical direction from the optic axis.

Fig. 5
Fig. 5

Plots of measured |Ez|at 1550 nm for the bare rod sample (a and b) and the SR structure (c and d). (a) and (c) are low magnification images and (b) and (d) are high magnification scans zoomed in on the region between the end of input waveguide and the scatterer. In (a) and (c), white dotted lines were added to help the readers to identify the silicon input waveguide.

Fig. 6
Fig. 6

Plots of cross-section |E| data extracted from |E| field plots. (a) Comparison of measured data extracted from Fig. 5 (d) and data from simulation results with nanorod diameter 160 nm and grating width 20 nm (b) Comparison of measured data extracted from Fig. 5 (b) and data from simulation results for bare rod of diameter 240 nm. Inset in (b) shows the optic axis along which the field amplitudes were extracted from simulations and measured electric field data.

Fig. 7
Fig. 7

Comparison plots of fringe curvature (a) compares the fringe extracted from measured data plotted in Fig. 5 (b, d) and data from simulation results for SR device with nanorod diameter 160 nm and gold nanowire width 20 nm and simulations of bare rod with diameter 240 nm. (b) 3D plot of Curvature (C) as a function of real and imaginary part of the effective permittivity of the coating. The curvature values were calculated at d = 1.3 μm along the vertical direction from the optic axis as shown in the inset. Also plotted is a horizontal plane at C = 1.49E-5 and a curve tracing the intersection between the plane and the 3D curve. (c) 3D plot of normalized SCS calculated as a function of real and imaginary part of effective permittivity of the coating along with the contour plots (d) Overlay plots of contours extracted fromFig. 7 (b and c) giving range of possible scattering reduction values. The contour plot extracted from Fig. 7b also contains an errorbar indicating the error in obtaining the curvature from experimental data. Also plotted as a black circle is the complex effective permittivity for the gold nanograting structure with grating width of 20 nm.

Fig. 8
Fig. 8

(a) Comparison of field amplitudes extracted from measured HNSOM data and data from simulation results (b) Comparison of first fringe curves for the fringe data extracted from measured data and data from simulation results.

Metrics