Abstract

We report the experimental implementation of a new method for generating multiple dynamical optical tweezers, where each one of them is generated with an independent linear polarization state with arbitrary orientation. This also allows an independent simultaneous polarization-rotation control. The laser beam, both for generating multiple traps and polarization control, has been modulated using a single reflective nematic liquid crystal with parallel alignment. We present experimental results of controlled displacement, orientation and rotation of birefringent particles. In addition, a simple method for estimating and canceling out the primary astigmatism present in the system is presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984).
    [CrossRef]
  2. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
    [CrossRef]
  3. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997).
    [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
    [CrossRef]
  5. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009).
    [CrossRef] [PubMed]
  6. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
    [CrossRef]
  7. R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt.42, 5107–5111 (2003).
    [CrossRef] [PubMed]
  8. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15902 (2008).
    [CrossRef] [PubMed]
  9. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
    [CrossRef] [PubMed]
  10. Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
    [CrossRef]
  11. M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
    [CrossRef] [PubMed]
  12. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt.44, 4049–4052 (2005).
    [CrossRef] [PubMed]
  13. J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
    [CrossRef]
  14. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
    [CrossRef]
  15. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14, 2101–2107 (2006).
    [CrossRef] [PubMed]
  16. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
    [CrossRef]
  17. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14, 4170–4175 (2006).
    [CrossRef] [PubMed]
  18. R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
    [CrossRef]
  19. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15, 5801–5808 (2007).
    [CrossRef] [PubMed]
  20. R. A. Chipman, “Polarimetry,” in Handbook of Optics, (McGraw-Hill, New York, 1994) Chap 22.
  21. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a ShackHartmann sensor,” Appl. Opt.48, 1084–1090 (2009).
    [CrossRef]
  22. R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
    [CrossRef]
  23. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012).
    [CrossRef] [PubMed]
  24. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
    [CrossRef] [PubMed]
  25. T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
    [CrossRef]
  26. D.S. Goodsell, “The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers,” Stem Cells19, 348349 (2001).
    [CrossRef]
  27. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011).
    [CrossRef]
  28. C. Bustamante, “Of torques, forces, and protein machines,” Prot. Sci.13, 3061–3065 (2004).
    [CrossRef]

2012 (3)

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012).
[CrossRef] [PubMed]

2011 (1)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011).
[CrossRef]

2009 (4)

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a ShackHartmann sensor,” Appl. Opt.48, 1084–1090 (2009).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15902 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
[CrossRef]

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15, 5801–5808 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (2)

C. Bustamante, “Of torques, forces, and protein machines,” Prot. Sci.13, 3061–3065 (2004).
[CrossRef]

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
[CrossRef]

2003 (3)

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt.42, 5107–5111 (2003).
[CrossRef] [PubMed]

2001 (1)

D.S. Goodsell, “The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers,” Stem Cells19, 348349 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

1997 (1)

1996 (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

1984 (1)

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984).
[CrossRef]

Allen, L.

Andilla, J.

Asavei, T.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

Barbieri, M.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

Bernet, S.

Berns, M. W.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011).
[CrossRef]

Botvinick, E.

Bowman, R.

Bryant, Z.

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

C. Bustamante, “Of torques, forces, and protein machines,” Prot. Sci.13, 3061–3065 (2004).
[CrossRef]

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

Chipman, R. A.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, (McGraw-Hill, New York, 1994) Chap 22.

Clark, R. L.

Cole, D. G.

Cooper, J.

Cooper, J. M.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

Cozzarelli, N. R.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Crichton, J. H.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984).
[CrossRef]

Crisona, N. J.

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Dainty, C.

Daria, V. R.

Davis, J. A.

Dholakia, K.

Di Leonardo, R.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

DiLeonardo, R.

Dutra, R. S.

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

Eriksen, R. L.

Evans, G. H.

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

Funk, M.

Fürhapter, S.

Gibson, G.

Glückstad, J.

Goodsell, D.S.

D.S. Goodsell, “The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers,” Stem Cells19, 348349 (2001).
[CrossRef]

Gore, J.

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

Harriman, J. L.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
[CrossRef]

Heckenberg, N. R.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009).
[CrossRef] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

Jesacher, A.

Keen, S.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15902 (2008).
[CrossRef] [PubMed]

Kenny, F.

Lara, D.

Leach, J.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

Linnenberger, A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
[CrossRef]

Loke, V. L.

Loke, V. L. Y.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

López-Quesada, C.

Love, G.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

Maia Neto, P. A.

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

Marston, P. L.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984).
[CrossRef]

Martín-Badosa, E.

Maurer, C.

Meyer, R. L.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

Miotke, J.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

Mohanty, S.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

Montes-Usategui, M.

Moreno, I.

Nieminen, T. A.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009).
[CrossRef] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

Nussenzveig, H. M.

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

Padgett, M.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15902 (2008).
[CrossRef] [PubMed]

Padgett, M. J.

Parkin, S. J.

Persson, M.

Pleguezuelos, E.

Preece, D.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

Ritsch-Marte, M.

Rodrigo, P. J.

Rodríguez-Herrera, O. G.

Rubinsztein-Dunlop, H.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009).
[CrossRef] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

Saunter, C.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

Schwaighofer, A.

Senthilkumaran, P.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
[CrossRef]

Serati, S. A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
[CrossRef]

Simpson, N. B.

Singh, K.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
[CrossRef]

Singh, R. K.

R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
[CrossRef]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Stone, M. D.

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Tiziani, H.J.

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

Viana, N. B.

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

Vogel, R.

Vologodskii, A.

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Wu, T.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

Wulff, K. D.

Yao, A.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008).
[CrossRef] [PubMed]

Apl. Phys. Lett. (1)

R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012).
[CrossRef]

Appl. Opt. (3)

Lab. on a Chip (1)

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009).
[CrossRef] [PubMed]

Nature (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998).
[CrossRef]

Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003).
[CrossRef]

Nature Photon. (2)

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012).
[CrossRef]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011).
[CrossRef]

New J. Phys. (2)

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009).
[CrossRef]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000).
[CrossRef]

R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996).
[CrossRef]

Phys. Rev. A (1)

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004).
[CrossRef]

Prot. Sci. (1)

C. Bustamante, “Of torques, forces, and protein machines,” Prot. Sci.13, 3061–3065 (2004).
[CrossRef]

Stem Cells (1)

D.S. Goodsell, “The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers,” Stem Cells19, 348349 (2001).
[CrossRef]

Other (1)

R. A. Chipman, “Polarimetry,” in Handbook of Optics, (McGraw-Hill, New York, 1994) Chap 22.

Supplementary Material (3)

» Media 1: MOV (2094 KB)     
» Media 2: MOV (2084 KB)     
» Media 3: MOV (2211 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A schematic diagram of the stages employed for generation of multiple holographic optical traps with independent control of polarization states.

Fig. 2
Fig. 2

Experimental setup with double incidence in a single SLM for both phase (A) and polarization (B) control. An example of masks for the creation of two tweezers with rotated states of polarization allows one to observe random distribution displayed at masks A and B.

Fig. 3
Fig. 3

Polarization states as a function of gray level displayed at the LCD acting as a rotator. A strong lineal dependence exists between the rotation angle and gray levels. Nonetheless, for intermediate gray levels the polarization ellipses show a slight decrease of their flattening.

Fig. 4
Fig. 4

Images of both the phase and the polarization masks at the SLMs pupil, right before the entrance at the microscope objective for generating (a) two and (b) three traps. A linear polarizer was inserted in order to darken zones with rotated polarization. The red bar is the scale length, of 120 pixels of the SLM, approximately 972 μm.

Fig. 5
Fig. 5

Surface maps depicting quality function. This function gives a measure of the symmetry properties of the vortex. (b) Zoom of quality function around the region marked with a dashed line in (a).

Fig. 6
Fig. 6

Comparison of the vortex used without (a) and with (b) astigmatism correction. Likewise, aberrated (c) and partially compensated (d) PSFs are shown. The images are the negative version of the acquired ones.

Fig. 7
Fig. 7

Sequence of the induced rotations on birefringent particles of ( Media 1).

Fig. 8
Fig. 8

Route of programmed movements for two birefringent particles. (a) The two particles are rotating in opposite directions, while one is kept in a fixed position the other one is displaced ( Media 2). (b) In fixed positions, the same birefringent particles are rotating in opposite senses and later the rotation of the right hand side particle is switched to the same sense of the other. ( Media 3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M Rot = R ( π / 4 ) ( 1 0 0 i ) R ( π / 4 ) ( 1 0 0 exp ( i ϕ ) ) R ( π / 4 ) ( 1 0 0 i ) R ( π / 4 ) ,
M Rot = i exp { i ϕ 2 } R ( ϕ 2 ) .
φ ( r , θ ) = m θ + c 2 2 Z 2 2 + c 2 + 2 Z 2 + 2 ,

Metrics