Abstract

Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object’s optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  3. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).
  4. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963).
    [CrossRef]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54(11), 1295–1301 (1964).
    [CrossRef]
  6. S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545 (1969).
  7. S. A. Benton, “Holographic displays - a review,” Opt. Eng. 14, 402–407 (1975).
  8. H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).
  9. E. N. Leith and J. Upatniek, “Holography with Achromatic-Fringe Systems,” J. Opt. Soc. Am. 57(8), 975 (1967).
    [CrossRef]
  10. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [CrossRef] [PubMed]
  11. G. Cochran, “New method of making fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56(11), 1513 (1966).
    [CrossRef]
  12. S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
    [CrossRef] [PubMed]
  13. G. Sirat and D. Psaltis, “Conoscopic Holography,” Opt. Lett. 10(1), 4–6 (1985).
    [CrossRef] [PubMed]
  14. L. M. Mugnier and G. Y. Sirat, “On-axis conoscopic holography without a conjugate image,” Opt. Lett. 17(4), 294–296 (1992).
    [CrossRef] [PubMed]
  15. T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
    [CrossRef]
  16. T. C. Poon, “Optical Scanning Holography - A Review of Recent Progress,” J. Opt. Soc. Korea 13(4), 406–415 (2009).
    [CrossRef]
  17. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  18. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Opt. Express 13(6), 1885–1891 (2005).
    [CrossRef] [PubMed]
  19. V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34(10), 1492–1494 (2009).
    [CrossRef] [PubMed]
  20. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [CrossRef] [PubMed]
  21. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15(5), 2244–2250 (2007).
    [CrossRef] [PubMed]
  22. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [CrossRef]
  23. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37(13), 2694–2696 (2012).
    [CrossRef] [PubMed]
  24. M. K. Kim, “Incoherent digital holographic adaptive optics,” Appl. Opt. 52(1), A117–A130 (2013).
    [CrossRef] [PubMed]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  26. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002).
    [CrossRef] [PubMed]
  27. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [CrossRef] [PubMed]
  28. M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
    [CrossRef]

2013

2012

2011

2009

2008

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

2007

2006

2005

2002

1999

1997

1996

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

1992

1985

1975

S. A. Benton, “Holographic displays - a review,” Opt. Eng. 14, 402–407 (1975).

1969

S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545 (1969).

1967

1966

1964

1963

1952

H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).

1949

D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).

1948

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Benton, S. A.

S. A. Benton, “Holographic displays - a review,” Opt. Eng. 14, 402–407 (1975).

S. A. Benton, “Hologram Reconstructions with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545 (1969).

Brooker, G.

Campos, J.

Cochran, G.

Dasari, R. R.

Dubois, F.

El-Sum, H. M. A.

H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).

Feld, M. S.

Gabor, D.

D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

García, J.

Iemmi, C.

Ikeda, T.

Javidi, B.

Joannes, L.

Kato, J.

Kim, E. S.

Kim, M. K.

Kim, S. G.

Kirkpatrick, P.

H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).

Lee, B.

Legros, J. C.

Leith, E. N.

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
[CrossRef]

Matsumura, T.

Micó, V.

Moreno, A.

Mugnier, L. M.

Poon, T. C.

Poon, T.-C.

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

Popescu, G.

Psaltis, D.

Rosen, J.

Shinoda, K.

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

Siegel, N.

Sirat, G.

Sirat, G. Y.

Suzuki, T.

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

Upatniek, J.

Upatnieks, J.

Wu, M. H.

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

Yamaguchi, I.

Zalevsky, Z.

Zhang, T.

Appl. Opt.

Computer

M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Korea

Nat. Photonics

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Eng.

S. A. Benton, “Holographic displays - a review,” Opt. Eng. 14, 402–407 (1975).

Opt. Express

Opt. Lett.

Phys. Rev.

H. M. A. El-Sum and P. Kirkpatrick, “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).

Proc. IEEE

T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84(5), 753–764 (1996).
[CrossRef]

Proc. Roy. Soc.

D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).

Other

P. Hariharan, Optical Holography: Principles, Techniques, and Applications (Cambridge University, 1996).

Supplementary Material (1)

» Media 1: MOV (33329 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Apparatus for CSIDH. L’s: lenses; M’s: mirrors; BS: beam-splitter.

Fig. 2
Fig. 2

CSIDH of a white LED flash light. (A) A frame capture of the CCD camera. (B) Amplitude and (C) phase of the complex hologram for the red, green, and blue channels. The phase images are plotted with blue-white-red color scale representing the range [π, π] . (D) Numerically focused images from the hologram for the three color channels. (E) Full color holographic images. The best focus image in the middle panel is at 30 mm and the other panels are at 20 and 40 mm before and after the best focus.

Fig. 3
Fig. 3

CSIDH of a toy boat and a die under halogen lamp illumination. (A) Amplitude and phase of the hologram for the red channel. (B) Numerically focused images from the hologram for the three color channels. (C) A cell phone camera image for comparison. (D) Full color focused image. (E) Full color image at distances 20 and 40 mm before and after the best focus, at 30 mm.

Fig. 4
Fig. 4

CSIDH of an outdoor scene under clear daylight illumination. (A) Amplitude and phase of the hologram for the red channel. (B) Numerically focused images from the hologram for the three color channels. (C) A cell phone camera image for comparison. (D) Full color focused image. (E) Full color image at distances 20 and 40 mm before and after the best focus, at 60 mm.

Fig. 5
Fig. 5

(Media 1) A movie demonstrating the focusing property of a CSIDH. Frames of the movie are calculated at distances 0 ~100 mm, at 1 mm interval, from the same recorded hologram. Two frames from the movie show the image focused (A) on the close toy boat, at about 30 mm, and (B) on the distant buildings, at about 60 mm.

Metrics