Abstract

We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
    [CrossRef]
  3. E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
    [CrossRef] [PubMed]
  4. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008).
    [CrossRef] [PubMed]
  5. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  6. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
    [CrossRef] [PubMed]
  7. U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
    [CrossRef] [PubMed]
  8. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  9. Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
    [CrossRef]
  10. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
    [CrossRef]
  11. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  13. M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011).
    [CrossRef] [PubMed]
  14. K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
    [CrossRef] [PubMed]
  15. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
    [CrossRef] [PubMed]
  16. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011).
    [CrossRef] [PubMed]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
    [CrossRef]
  18. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
    [CrossRef]
  19. T. Lei and A. W. Poon, “Silicon-on-insulator 100µm-core multimode interferometer waveguides for two-dimensional microparticle trapping and manipulation,” in 2012 IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 66–68.
  20. S. L. He, X. Y. Ao, and V. Romanov, “General properties of N x M self-images in a strongly confined rectangular waveguide,” Appl. Opt.42(24), 4855–4859 (2003).
    [CrossRef] [PubMed]
  21. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  22. Y. Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express18(17), 18483–18491 (2010).
    [CrossRef] [PubMed]
  23. H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005).
    [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  25. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
    [CrossRef] [PubMed]
  26. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
    [CrossRef]
  27. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
    [CrossRef] [PubMed]
  28. D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
    [CrossRef]
  29. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
    [CrossRef] [PubMed]
  30. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. L. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express18(10), 10462–10472 (2010).
    [CrossRef] [PubMed]
  31. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  32. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express13(18), 6956–6963 (2005).
    [CrossRef] [PubMed]

2012

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

2011

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19(20), 18871–18884 (2011).
[CrossRef] [PubMed]

2010

S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. L. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express18(10), 10462–10472 (2010).
[CrossRef] [PubMed]

Y. Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express18(17), 18483–18491 (2010).
[CrossRef] [PubMed]

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

2009

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

2008

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

2007

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

2006

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
[CrossRef]

2005

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

2003

S. L. He, X. Y. Ao, and V. Romanov, “General properties of N x M self-images in a strongly confined rectangular waveguide,” Appl. Opt.42(24), 4855–4859 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
[CrossRef]

1997

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

1996

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

1995

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1986

1973

Ao, X. Y.

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

Ashkin, A.

Baffou, G.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

Bai, J. J.

Bareil, P. P.

Baudelet, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Bockelmann, U.

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Butler, C.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Chatelain, F.

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Chen, H.

H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005).
[CrossRef]

Chiou, A.

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Cižmár, T.

Clemen, A. E. M.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Colas, G.

Curtis, J. E.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
[CrossRef]

Dérouard, J.

Dholakia, K.

Di Leonardo, R.

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

Duval, P. L.

Dziedzic, J. M.

Eriksson, E.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Essevaz-Roulet, B.

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

Fardad, S.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Fedeli, J. M.

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Fuchs, A.

Gaugiran, S.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Gétin, S.

Goksör, M.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Goonewardene, A.

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

Granéli, A.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
[CrossRef]

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Hale, G. M.

Hamilton, J.

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

Hanstorp, D.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Haraszti, T.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

He, S. L.

Heslot, F.

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

Ianni, F.

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

Jia, D. D.

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
[CrossRef]

Kurre, R.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008).
[CrossRef] [PubMed]

Liu, Y. Y.

Lundqvist, F.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Ong, L. S.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
[CrossRef]

Padgett, M.

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

Poon, A. W.

Querry, M. R.

Quidant, R.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

Rancourt-Grenier, S.

Richardson, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Romanov, V.

Ruocco, G.

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

Schmitz, C.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Scrimgeour, J.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Sheng, Y. L.

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Sincore, A.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Sott, K.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Spatz, J. P.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Sun, Y. Y.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
[CrossRef]

Sveningsson, M.

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

Thomen, P.

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

Tong, D. T. K.

H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005).
[CrossRef]

Uhrig, K.

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Vangheluwe, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Viasnoff, V.

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Wei, M. T.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Yuan, X. C.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
[CrossRef]

Zaman, L. M.

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

Zhang, H.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008).
[CrossRef] [PubMed]

ACS Nano

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano5(7), 5457–5462 (2011).
[CrossRef] [PubMed]

Am. J. Phys.

D. D. Jia, J. Hamilton, L. M. Zaman, and A. Goonewardene, “The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres,” Am. J. Phys.75(2), 111–115 (2007).
[CrossRef]

Annu. Rev. Biochem.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett.89(14), 141108 (2006).
[CrossRef]

Biophys. J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophys. J.82(3), 1537–1553 (2002).
[CrossRef] [PubMed]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Chen and D. T. K. Tong, “Two-dimensional symmetric multimode interferences in silicon square waveguides,” IEEE Photon. Technol. Lett.17(4), 801–803 (2005).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

J. R. Soc. Interface

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface5(24), 671–690 (2008).
[CrossRef] [PubMed]

Lab Chip

E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksör, and A. Granéli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab Chip10(5), 617–625 (2010).
[CrossRef] [PubMed]

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

K. Uhrig, R. Kurre, C. Schmitz, J. E. Curtis, T. Haraszti, A. E. M. Clemen, and J. P. Spatz, “Optical force sensor array in a microfluidic device based on holographic optical tweezers,” Lab Chip9(5), 661–668 (2009).
[CrossRef] [PubMed]

Laser Photon. Rev.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011).
[CrossRef]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun.214(1–6), 15–24 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1–6), 169–175 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Proc. SPIE

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE8225, 82250C (2012).
[CrossRef]

Other

T. Lei and A. W. Poon, “Silicon-on-insulator 100µm-core multimode interferometer waveguides for two-dimensional microparticle trapping and manipulation,” in 2012 IEEE 9th International Conference on Group IV Photonics (IEEE, 2012), pp. 66–68.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

Supplementary Material (1)

» Media 1: MOV (280 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. Inset: Schematic of optical trapping and manipulation of particles in a thin fluidic cell using SMART. Fg: the optical gradient force exerted on the particle in the horizontal directions, Fgz: the optical gradient force exerted on the particle in the Z direction, Fs: the optical scattering force exerted on the particle in the Z direction, G: the gravitational force exerted on the particle, Fb: the buoyant force in water, Fc: the convection flow fluidic drag force exerted on the particle in the Z direction. Black solid arrows: the force exerted on the particle. Blue dashed arrows: the absorption-induced fluidic flow. Red solid curves: the light beam intensity distributions in the horizontal and longitudinal directions. Red dashed arrows: beam focal plane.

Fig. 2
Fig. 2

Imaged light beam array patterns of the MMI waveguides. (a) SEM of the fabricated SOI MMI waveguide featuring the end-facet. (b)-(e) NIR images (in gray scale) of the array patterns from the MMI waveguides of various lengths: (b) 11 mm, (c) 5.5 mm, (d) 4.5 mm and (e) 3 mm. (f) Imaged 7 × 7 array light intensity profile (in gray scale shown in false colors) of the MMI waveguide with 3mm length. Inset of (f): schematic of the relative position between the butt-coupled SMF and the MMI waveguide facet. (g)-(j) Imaged light intensity profiles (in gray scale shown in false colors) with the corresponding SMF core offsets from the MMI waveguide facet center.

Fig. 3
Fig. 3

Optical trapping arrays of 2.2 μm and 1 μm polystyrene particles in DI water. (a) Optical photograph of the trapped 2.2 μm particles. (b) Trajectories of the trapped particles taken from a 1-minute video. (c) Histogram of the particle displacements from the trapping center position. (d) Trajectories of three untrapped 2.2 μm particles under Brownian motion. (e) Optical photograph of the trapped 1 μm particles. (f) Trajectories of the trapped particles taken from a 40-second video. (g) Histogram of the particle displacements from the trapping center position. (h) Trajectories of three untrapped 1 μm particles under Brownian motion.

Fig. 4
Fig. 4

Optical manipulation of 2.2 μm polystyrene particles (Media 1, 5× speed). (a) A cluster of 13 trapped particles at 0 s. (b) The cluster is split in the X direction at 14 s. (c) The cluster is further split in the Y direction into four parts at 26 s. (d) The split groups of particles are recombined in the X direction back to two clusters at 45 s. (e) The remaining split groups of particles are recombined in the Y direction back to a single cluster at 58 s. White dashed arrows: the cluster transport directions. First row (from the top): images of the trapped particles; second row: the corresponding imaged MMI output patterns; third row: schematics of the corresponding SMF end-firing positions. Black dashed arrows: the SMF offset directions.

Fig. 5
Fig. 5

FEM-based simulations of the physical mechanisms involved in the multiple-beam optical tweezers. (a) Electric-field amplitude profile of three incident Gaussian beams. (b) Electric-field amplitude profile of the three incident Gaussian beams scattered by three 1 μm particles located at the beam waist centers. (c) Temperature distribution of the fluidic cell of water illuminated by the three Gaussian beams. (d) Flow velocity distribution of the absorption-induced fluidic flow. (e) Electric-field amplitude profile of seven incident Gaussian beams. (f) Electric-field amplitude profile of the seven incident Gaussian beams scattered by seven 2.2 μm particles located at the beam waist centers. (g) Temperature distribution of the fluidic cell of water illuminated by the seven Gaussian beams. (h) Flow velocity distribution of the absorption-induced fluidic flow.

Tables (1)

Tables Icon

Table 1 Variances and trapping stiffness of untrapped (Brownian motion) and trapped 1 μm and 2.2 μm particles in DI water

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N= 1 L N n λ W 2
k= k B T r 2 P
F = T n d S = 1 2 ε 0 E 2 ( n 2 2 - n 1 2 )d S

Metrics