Abstract

Bi2+-doped BaSO4 phosphor was synthesized in air via solid state reaction method. Three excitation bands and one emission band were observed at 260 nm (2P1/22S1/2), 452 nm (2P1/22P3/2(2)), 592 nm (2P1/22P3/2(1)), and 627 nm (2P3/2(1) → 2P1/2), respectively. W-LEDs were demonstrated by using a blend composition of BaSO4:Bi2+ and YAG:Ce3+ phosphors pumped with a 455 nm blue LEDs chip. The results indicate that BaSO4:Bi2+ phosphor is suitable as potential red phosphor for application in W-LEDs excited with blue LEDs chip.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
    [CrossRef]
  2. C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
    [CrossRef]
  3. H. Guo, H. Zhang, J. Li, and F. Li, “Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light,” Opt. Express18(26), 27257–27262 (2010).
    [CrossRef] [PubMed]
  4. C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express18(5), 5089–5099 (2010).
    [CrossRef] [PubMed]
  5. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
    [CrossRef]
  6. R. Cao, M. Peng, E. Song, and J. Qiu, “High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED,” ECS J. Solid State. Sci. Technol.1(4), R123–R126 (2012).
  7. J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
    [CrossRef]
  8. H. Guo, R. Wei, and X. Liu, “Tunable white luminescence and energy transfer in (Cu+)2, Eu3+ codoped sodium silicate glasses,” Opt. Lett.37(10), 1670–1672 (2012).
    [CrossRef] [PubMed]
  9. Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express19(7), 6303–6311 (2011).
    [CrossRef] [PubMed]
  10. W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express18(3), 2946–2951 (2010).
    [CrossRef] [PubMed]
  11. H. Guo, X. Wang, J. Chen, and F. Li, “Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses,” Opt. Express18(18), 18900–18905 (2010).
    [CrossRef] [PubMed]
  12. Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
    [CrossRef]
  13. C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
    [CrossRef]
  14. Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett.33(16), 1816–1818 (2008).
    [CrossRef] [PubMed]
  15. C. Kulshreshtha, J. H. Kwak, Y. J. Park, and K. S. Sohn, “Photoluminescent and Decay Behaviors of Mn2+ and Ce3+ Coactivated MgSiN2 Phosphors for Use in Light-Emitting-Diode Applications,” Opt. Lett.34(6), 794–796 (2009).
    [CrossRef] [PubMed]
  16. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
    [CrossRef]
  17. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
    [CrossRef] [PubMed]
  18. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012).
    [CrossRef] [PubMed]
  19. R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3,” Opt. Express20(16), 18505–18514 (2012).
    [CrossRef] [PubMed]
  20. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009).
    [CrossRef] [PubMed]
  21. G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  22. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  23. M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
    [CrossRef]
  24. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
    [CrossRef]
  25. M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).
  26. A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
    [CrossRef]
  27. JCPDS Card No. 76–213.
  28. Z. Xia, J. Zhuang, and L. Liao, “Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor with Efficient Energy Transfer for Potential Application in White Light-Emitting Diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
    [CrossRef] [PubMed]

2012 (6)

2011 (3)

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express19(7), 6303–6311 (2011).
[CrossRef] [PubMed]

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

2010 (5)

2009 (4)

2008 (2)

Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett.33(16), 1816–1818 (2008).
[CrossRef] [PubMed]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

2006 (1)

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

1999 (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

1998 (1)

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

1994 (3)

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

1968 (1)

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Blasse, G.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Cao, R.

Card No, JCPDS

JCPDS Card No. 76–213.

Chen, D.

Chen, J.

Chen, T. M.

Chen, Y.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Chiu, Y. C.

Crombag, M.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

Da, N.

de Mello Donegá, C.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

Ding, W.

J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
[CrossRef]

Du, F.

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Fang, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Fattakhova, Z. T.

Folkerts, H.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Fujimoto, Y.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Guo, H.

Hamstra, M.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Hao, J.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Haula, E. V.

Huang, C. H.

Huang, Y.

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express19(7), 6303–6311 (2011).
[CrossRef] [PubMed]

Jang, S. M.

Jiang, N.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Kazin, P. E.

Korchak, V. N.

Krolikowski, S.

Kuang, X.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Kulshreshtha, C.

Kwak, J. H.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Li, F.

Li, J.

Liao, L.

Z. Xia, J. Zhuang, and L. Liao, “Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor with Efficient Energy Transfer for Potential Application in White Light-Emitting Diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Lin, C.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Lin, C. C.

Lin, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Liu, C.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Liu, G. K.

Liu, R. S.

Liu, W. R.

Liu, X.

Liu, Z.

J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
[CrossRef]

Lü, J.

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Luo, Y.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Meijerink, A.

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Nakai, Y.

Nakatsuka, M.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Pan, Y. X.

Park, Y. J.

Peng, M.

Qiu, J.

R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3,” Opt. Express20(16), 18505–18514 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, E. Song, and J. Qiu, “High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED,” ECS J. Solid State. Sci. Technol.1(4), R123–R126 (2012).

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Quan, Z.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Romanov, A. N.

Ruan, J.

Seo, H.

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Seo, H. J.

Sohn, K. S.

Song, E.

R. Cao, M. Peng, E. Song, and J. Qiu, “High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED,” ECS J. Solid State. Sci. Technol.1(4), R123–R126 (2012).

Srivastava, A.

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

Stiegelschmitt, A.

Su, L.

Su, Q.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
[CrossRef]

Sulimov, V. B.

Trusov, L. A.

Tsuboi, T.

Tsvetkov, V. B.

Usovich, O. V.

Veber, A. A.

Wang, J.

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
[CrossRef]

Wang, X.

Wei, R.

Wondraczek, L.

Xia, Z.

Z. Xia, J. Zhuang, and L. Liao, “Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor with Efficient Energy Transfer for Potential Application in White Light-Emitting Diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Xu, J.

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Yeh, Y. T.

You, H.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Zhang, H.

Zhang, J.

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

Zhang, Q.

Zheng, J.

Zhou, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Zhu, R.

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

Zhuang, J.

Z. Xia, J. Zhuang, and L. Liao, “Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor with Efficient Energy Transfer for Potential Application in White Light-Emitting Diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Adv. Funct. Mater. (1)

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional Bismuth- Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Chen, J. Wang, C. Liu, X. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett.98(8), 081917 (2011).
[CrossRef]

Chem. Mater. (1)

C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, and J. Lin, “Sol-gel-derived BPO4/Ba2+ as a new efficient and environmentally-friendly bluish white luminescent material,” Chem. Mater.18(2), 458–464 (2006).
[CrossRef]

ECS J. Solid State. Sci. Technol. (1)

R. Cao, M. Peng, E. Song, and J. Qiu, “High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED,” ECS J. Solid State. Sci. Technol.1(4), R123–R126 (2012).

Fusion Eng. Des. (1)

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des.44(1-4), 437–439 (1999).
[CrossRef]

Inorg. Chem. (1)

Z. Xia, J. Zhuang, and L. Liao, “Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor with Efficient Energy Transfer for Potential Application in White Light-Emitting Diodes,” Inorg. Chem.51(13), 7202–7209 (2012).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (1)

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).

J. Appl. Ceram. Technol. (1)

J. Wang, Z. Liu, W. Ding, and Q. Su, “Luminescent Properties of (Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+ Phosphors and Their Application for White LED,” J. Appl. Ceram. Technol.6(4), 447–452 (2009).
[CrossRef]

J. Chem. Phys. (1)

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

J. Lumin. (2)

A. Srivastava, “Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),” J. Lumin.78(4), 239–243 (1998).
[CrossRef]

C. de Mello Donegá, M. Crombag, A. Meijerink, and G. Blasse, “Vibronic transitions in the luminescence spectra of Pr3+ in Na5La(MoO4)4,” J. Lumin.60–61, 74–77 (1994).
[CrossRef]

J. Mater. Chem. (2)

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

J. Lü, F. Du, R. Zhu, Y. Huang, and H. Seo, “Phase formations and tunable red luminescence of Na2CaMg1-xMnx(PO4)2 (x = 0.05–1.0),” J. Mater. Chem.21(41), 16398–16405 (2011).
[CrossRef]

J. Phys. Chem. Solids (1)

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Opt. Express (10)

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Opt. Express18(3), 2946–2951 (2010).
[CrossRef] [PubMed]

C. H. Huang and T. M. Chen, “Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes,” Opt. Express18(5), 5089–5099 (2010).
[CrossRef] [PubMed]

H. Guo, X. Wang, J. Chen, and F. Li, “Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses,” Opt. Express18(18), 18900–18905 (2010).
[CrossRef] [PubMed]

H. Guo, H. Zhang, J. Li, and F. Li, “Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light,” Opt. Express18(26), 27257–27262 (2010).
[CrossRef] [PubMed]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express19(7), 6303–6311 (2011).
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3.,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012).
[CrossRef] [PubMed]

R. Cao, M. Peng, J. Zheng, J. Qiu, and Q. Zhang, “Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3,” Opt. Express20(16), 18505–18514 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

JCPDS Card No. 76–213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a. XRD profiles of BaSO4, Ba0.994SO4:0.006Bi2+ and JCPDS Card No. 76-213 (BaSO4); b. Unit-cell representation of the BaSO4.

Fig. 2
Fig. 2

PLE and PL spectra of the BaSO4:Bi2+ phosphor sintered at 800°C for 2h in air (λex = 452 nm, λem = 627 nm). The inset: photographs of the Ba0.994SO4:0.006Bi2+ phosphor under daytime (left) and 254 nm UV lamp (right), respectively.

Fig. 3
Fig. 3

a. Simplified energy level diagrams of MSO4: Bi2+ (M = Ca2+, Sr2+ and Ba2+) (NR: non-radiative relaxation process); b. PLE and PL spectra of the MSO4: Bi2+ phosphors sintered at 800°C for 2h in air (M = Ba2+ex = 452 nm; λem = 627 nm), Sr2+ex = 452 nm; λem = 610 nm) and Ca2+ex = 395 nm; λem = 580 nm)) at room temperature. The spectrum of CaSO4:Bi2+ in the range of 230 to 280 nm and 530 to 650 nm were amplified 10 times for clarity.

Fig. 4
Fig. 4

a. PL spectra of Ba1-xSO4:xBi2+ phosphors sintered at 800°C for 2h in air (x = 0.03, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mol%) with excitation at 452 nm. The inset: Dependence of PL intensity on Bi doped concentration in Ba1-xSO4:xBi2+ phosphors (x = 0.03 ~1.2 mol%) with excitation at 452 and 592 nm, respectively. b. Luminescence decay curve of BaSO4:Bi2+ phosphor sintered at 800°C for 2h in air (The monitoring wavelength is at 627 nm with 452 nm excitation). The red curve is a fit of the experimental data to a first order exponential decay equation. The inset: Dependence of fluorescent lifetime on Bi2+ doped concentration in Ba1-xSO4: xBi2+ phosphors (x = 0.03 ~1.2 mol%).

Fig. 5
Fig. 5

a Dependence of integrated lifetime (The monitoring wavelength is at 627 nm with 452 nm excitation) and PL intensity with excitation at 452 and 592 nm, respectively, in the temperature range of 10 to 300 K, in Ba0.994SO4:0.006Bi2+ phosphor sintered at 800°C for 2h in air. b. Time resolved luminescence spectra of Ba0.994SO4:0.006Bi2+ phosphor sintered at 800°C for 2h in air. Excitation wavelength is 452 nm. Delay times are listed in legend.

Fig. 6
Fig. 6

EL spectrum of the W-LEDs using phosphors blend of Ba0.994SO4:0.006Bi2+ and YAG:Ce3+ phosphors pumped with a 455 nm blue LEDs chip. The inset: a. Luminescence photograph of the W-LEDs lamp (3.2V); b. CIE chromaticity coordinates of the W-LEDs.

Tables (1)

Tables Icon

Table 1 Excitation (λex in nm), emission (λem in nm) and fluorescence lifetime (τBi2+ in μs) of MSO4: Bi2+ (M = Ca2+, Sr2+ and Ba2+).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)=Aexp(t/τ)

Metrics