Abstract

Concentration of light and infrared capture are two favored approaches for increasing the power conversion efficiency (PCE) of photovoltaic devices. Using optical transfer matrix formalism, we model the absorption of organic photovoltaic films as a function of active layer thickness and incident wavelength. In our simulations we consider the absorption in the optical cavity formed by the polymer bulk heterojunction active layer (AL) between the aluminum cathode and indium tin oxide (ITO) anode. We find that optical absorption can be finely tuned by adjusting the ITO thickness within a relatively narrow range, thus eliminating the need for a separate optical spacer. We also observe distinct spectral effects due to frequency pulling which results in enhanced long-wavelength absorption. Spectral sculpting can be carried out by cavity design without affecting the open circuit voltage as the spectral shifts are purely optical effects. We have experimentally verified aspects of our modeling and suggest methods to improve device design.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
    [CrossRef] [PubMed]
  2. P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
    [CrossRef]
  3. J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
    [CrossRef] [PubMed]
  4. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
    [CrossRef] [PubMed]
  5. C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004).
    [CrossRef]
  6. Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
    [CrossRef]
  7. N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
    [CrossRef] [PubMed]
  8. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
    [CrossRef] [PubMed]
  9. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
    [CrossRef] [PubMed]
  10. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
    [CrossRef]
  11. A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
    [CrossRef]
  12. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
    [CrossRef]
  13. M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010).
    [CrossRef]
  14. B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
    [CrossRef]
  15. M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
    [CrossRef]
  16. P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
    [CrossRef]
  17. F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005).
    [CrossRef]
  18. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
    [CrossRef]
  19. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
    [CrossRef]
  20. S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
    [CrossRef]
  21. J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
    [CrossRef]
  22. A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
    [CrossRef] [PubMed]
  23. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
    [CrossRef]
  24. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
    [CrossRef]
  25. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
    [CrossRef]
  26. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
    [CrossRef]
  27. N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
    [CrossRef] [PubMed]
  28. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
    [CrossRef] [PubMed]
  29. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
    [CrossRef]
  30. C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).
  31. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
    [CrossRef]
  32. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express20(S5), A729–A739 (2012).
    [CrossRef]
  33. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
    [CrossRef] [PubMed]
  34. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
    [CrossRef]
  35. L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
    [CrossRef]
  36. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
    [CrossRef]
  37. E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
    [CrossRef]
  38. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
    [CrossRef]
  39. L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
    [CrossRef]
  40. T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
    [CrossRef]
  41. H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
    [CrossRef]
  42. J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
    [CrossRef]
  43. Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett.95(19), 193301 (2009).
    [CrossRef]
  44. Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett.98(3), 033301 (2011).
    [CrossRef]
  45. P. W. Milonni and J. H. Eberly, Lasers, Wiley-Interscience, New York, USA pp. 342–347 (1998).
  46. Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
    [CrossRef]
  47. Manuscript in Preparation
  48. B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
    [CrossRef]
  49. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt.41(19), 3978–3987 (2002).
    [CrossRef] [PubMed]
  50. Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010).
    [CrossRef] [PubMed]
  51. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
    [CrossRef] [PubMed]
  52. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
    [CrossRef]
  53. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
    [CrossRef] [PubMed]
  54. H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
    [CrossRef]
  55. J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
    [CrossRef]

2012

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express20(S5), A729–A739 (2012).
[CrossRef]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

2011

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett.98(3), 033301 (2011).
[CrossRef]

J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
[CrossRef]

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
[CrossRef]

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

2010

M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010).
[CrossRef]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010).
[CrossRef] [PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

2009

Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett.95(19), 193301 (2009).
[CrossRef]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
[CrossRef]

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

2008

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
[CrossRef]

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

2007

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

2006

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
[CrossRef]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
[CrossRef]

2005

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

2004

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004).
[CrossRef]

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

2002

2000

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

1999

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
[CrossRef]

1998

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

1995

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

1994

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

1993

T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
[CrossRef]

1987

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

1986

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

1983

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

1982

E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Admassie, S.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Andersson, L. M.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

Andersson, M. R.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

Arlauskas, K.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Banerji, N.

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

Bazan, G. C.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Berrigan, J. D.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Bonekamp, J. B.

J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
[CrossRef]

Borek, C.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Boudreault, P. T.

P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
[CrossRef]

Bulovic, V.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Burrows, P.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

Cao, Y.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Cha, K. C.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Chang, R. P. H.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Chen, C.-C.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Chen, H. Y.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Chen, H.-Y.

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

Chen, L. X.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Chen, Y.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Cheun, H.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Cheyns, D.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Cho, S.-H.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Chukharev, V.

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

Coates, N. E.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Cody, D. G.

E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Cote, L. J.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Cowan, S. R.

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

Deng, X.

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

DiVenere, A.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Do, Y. R.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Dodabalapur, L. J.

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

Dou, L.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Facchetti, A.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Feng, D.

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Fenoll, M.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Forrest, S.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Forrest, S. R.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Fuentes-Hernandez, C.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Gadisa, A.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

Gao, J.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Garbuzov, D.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Girtan, M.

M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010).
[CrossRef]

Gong, X.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

Goossens, A.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).

Granlund, T.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

Gu, G.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Guo, X.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Hadipour, A.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Harbecke, B.

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

He, Y.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

He, Z.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Heeger, A. J.

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Heremans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Hersam, M. C.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Ho, S.-T.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Hou, J.

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

Hou, J. H.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Hou, Q.

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Huang, J.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Huang, Q.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Huisman, C. L.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).

Hummelen, J. C.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Inganäs, O.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
[CrossRef]

Itoh, Y.

T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
[CrossRef]

Jeong, D. S.

Jin, S.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Johns, J. E.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Jørgensen, M.

M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
[CrossRef]

Jukola, J.

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

Juska, G.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Kadleck, C. J.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Kakuta, A.

T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
[CrossRef]

Katsidis, C. C.

Khalfin, V.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Kim, H. K.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Kim, I.

Kim, J. Y.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

Kim, S. H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

Kim, S.-K.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Kippelen, B.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Ko, D.-H.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Krebs, F. C.

M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
[CrossRef]

F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005).
[CrossRef]

Kwock, E. W.

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

Leclerc, M.

P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
[CrossRef]

Lee, H.-H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

Lee, J.-G.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Lee, J.-H.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Lee, J.-Y.

Lee, K.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

Lee, K.-S.

Lee, T. S.

Lee, W. S.

Lee, Y.-H.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Lemmetyinen, H.

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

Leong, W. L.

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

Li, G.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

Li, S.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Liang, Y.

Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010).
[CrossRef] [PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

Liang, Y. Y.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Liu, Y.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Long, G.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Long, Y.

Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett.98(3), 033301 (2011).
[CrossRef]

Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett.95(19), 193301 (2009).
[CrossRef]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Loser, S.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Lou, S. J.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Ma, W.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

Ma, W. L.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Madsen, M. E.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Mammo, W.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

Marks, T. J.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
[CrossRef]

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

McGehee, M. D.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Meerholz, K.

J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
[CrossRef]

Metz, A. W.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Miller, T. M.

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

Moses, D.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Moulé, J.

J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
[CrossRef]

Mozer, A. J.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Murray, P.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Najari, A.

P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
[CrossRef]

Nakayama, T.

T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
[CrossRef]

Ni, J.

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Niesen, B.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Niggemann, M.

B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
[CrossRef]

Norrman, K.

M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
[CrossRef]

Nyberg, T.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

Oh, J. R.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Ojala, M.

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

Ortiz, R. P.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Osterbacka, R.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Park, J.-W.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Park, Y.-I.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

Peet, J.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Perez, M. D.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
[CrossRef]

Peumans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

Pivrikas, A.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Rand, B. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Ratner, M. A.

J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
[CrossRef]

Ray, C.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

Richard, E.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

Rolczynski, B. S.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Roman, L. S.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
[CrossRef]

Rothberg, L. J.

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

Rusu, M.

M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010).
[CrossRef]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Sandhage, K. H.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Sariciftci, N. S.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004).
[CrossRef]

Scharber, M.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Schoonman, J.

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).

Scully, S. R.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

Sergeant, N. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

Servaites, J. D.

J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
[CrossRef]

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Shim, J.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Shrotriya, V.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
[CrossRef]

Siapkas, D. I.

Sievers, D. W.

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
[CrossRef]

Spanggaard, H.

F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005).
[CrossRef]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Stubb, H.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Su, S.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Svensson, M.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

Szarko, J. M.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Thompson, M. E.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Tian, J.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Tsai, S.-T.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Vivo, P.

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

Wan, X.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Wang, F.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Wang, L.

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Winder, C.

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004).
[CrossRef]

Wu, H.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Wu, J.

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

Wu, Y.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Würfel, U.

B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
[CrossRef]

Xia, J.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Xie, Z.

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

Xu, M.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Xu, T.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Xu, Z.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Yang, C.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

Yang, G. W.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Yang, Y.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
[CrossRef]

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

You, J.

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Yu, G.

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Yu, L.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010).
[CrossRef] [PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

Yu, L. P.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Zhang, F.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Zhang, S.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

Zhang, S. Q.

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

Zheng, L.

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Zhong, C.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Zhou, J.

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Zhou, N.

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Zhou, Q.

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

Zhou, Y.

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

Zimmermann, B.

B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
[CrossRef]

Acc. Chem. Res.

Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007).
[CrossRef]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005).
[CrossRef]

S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006).
[CrossRef]

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012).
[CrossRef] [PubMed]

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000).
[CrossRef]

N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012).
[CrossRef] [PubMed]

Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011).
[CrossRef] [PubMed]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986).
[CrossRef]

Appl. Phys. Lett.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett.95(19), 193301 (2009).
[CrossRef]

Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett.98(3), 033301 (2011).
[CrossRef]

L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994).
[CrossRef]

T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993).
[CrossRef]

Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007).
[CrossRef]

Chem. Mater.

F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005).
[CrossRef]

P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011).
[CrossRef]

Energy Environ. Sci.

J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011).
[CrossRef]

H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011).
[CrossRef]

IEEE Trans. Electron. Dev.

E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

J. Am. Chem. Soc.

J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008).
[CrossRef] [PubMed]

L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012).
[CrossRef] [PubMed]

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009).
[CrossRef] [PubMed]

Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006).
[CrossRef]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999).
[CrossRef]

D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006).
[CrossRef]

J. Mater. Chem.

C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004).
[CrossRef]

J. Phys. Chem. Lett.

P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011).
[CrossRef]

Nano Lett.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Nat. Mater.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007).
[CrossRef] [PubMed]

Nat. Photonics

H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009).
[CrossRef]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012).
[CrossRef]

Opt. Express

Org. Electron.

H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010).
[CrossRef]

J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008).
[CrossRef]

Phys. Rev. B

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998).
[CrossRef]

Phys. Rev. Lett.

A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005).
[CrossRef] [PubMed]

Science

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010).
[CrossRef]

B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009).
[CrossRef]

M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008).
[CrossRef]

P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008).
[CrossRef]

C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).

Other

P. W. Milonni and J. H. Eberly, Lasers, Wiley-Interscience, New York, USA pp. 342–347 (1998).

Manuscript in Preparation

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorptance contours of: (a) a free-standing P3HT/PCBM film in air, (b) a P3HT:PCBM layer surrounded by an incoherent glass substrate (1mm), ITO (150 nm), PEDOT:PSS (40 nm), P3HT/PCBM, and Al (120 nm), calculated by optical transfer matrix theory for thicknesses ranging from 0 to 400 nm. (c) Absorptance contour of Fig. 1(b) multiplied by the AM1.5G solar spectrum, highlighting the importance of broadening of the device absorption to wavelengths near or above 600 nm. (d) Total absorbed photons in a P3HT:PCBM layer calculated by transfer matrix theory for a photovoltaic structure consisting of varying thicknesses of ITO / PEDOT:PSS (40 nm) / P3HT:PCBM (0-400 nm)/ Al (120 nm). Here, integration over the wavelength of the absorption spectrum multiplied by the terrestrial solar irradiance spectrum versus thickness is depicted.

Fig. 2
Fig. 2

(a) Absorptance of the P3HT:PCBM layer calculated by optical transfer matrix theory for a photovoltaic structure consisting of ITO (110 nm) / PEDOT:PSS (40 nm) / P3HT:PCBM (0-400 nm)/ Al (20 nm). (b) Absorptance contour calculated by the transfer matrix method with the first four cavity modes plotted as black dots on top for a typical photovoltaic architecture: ITO (150 nm)/ PEDOT:PSS (40nm) / P3HT:PCBM (0-400nm)/ Al (120nm).

Fig. 3
Fig. 3

(a) Normal incidence absorbance spectra of a series of structures with varying active layer thickness consisting of ITO (150 nm) / PEDOT:PSS (40 nm) / P3HT:PCBM (80-250 nm)/ Al (100 nm). Notable peaks and troughs are observed to shift with active layer thickness and distinct features are highlighted by symbols. For comparison, the material extinction spectrum is also shown as a dashed curve. (b) A zoomed-in view of the simulation results of Fig. 1(b) with peaks (green circles, black squares) and troughs (blue triangles) from normal incidence absorbance measurements (Fig. 3(a)) plotted on top showing agreement between calculations and experiment.

Fig. 4
Fig. 4

(a) Normal incidence absorbance spectra of a series of PTB7 films of various thickness consisting of ITO (150 nm) / PTB7/ Al (100 nm). The material extinction spectrum is also shown. (b) A contour plot simulated by optical transfer matrix calculations overlaid by data with blue corresponding to peaks in Fig. 4(a), and black corresponding to valleys.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν= ν 21 δ ν c + ν m δ ν 21 δ ν c +δ ν 21

Metrics