Abstract

We report on the development of an opto-fluidic waveguide coupling mechanism for planar solar concentration. This mechanism is self-adaptive and light-responsive to efficiently maintain waveguide coupling and concentration independent of incoming light’s direction. Vapor bubbles are generated inside a planar, liquid waveguide using infrared light on an infrared absorbing glass. Visible light focused onto the bubble is then reflected by total internal reflection (TIR) at the liquid-gas interface and coupled into the waveguide. Vapor bubbles inside the liquid are trapped by a thermal effect and are shown to self-track the location of the infrared focus. Experimentally we show an optical to optical waveguide coupling efficiency of 40% using laser light through a single commercial lens. Optical simulations indicate that coupling efficiency > 90% is possible with custom optics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor & Francis, CRC Press, London, 2004) chap. 13.
    [CrossRef]
  2. H. Tabor, “Stationary mirror systems for solar collectors,” Sol. Energy 2, 27–33 (1958).
    [CrossRef]
  3. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
    [CrossRef]
  4. R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978).
    [CrossRef]
  5. K. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt. 51, 1086–1094 (2012).
    [CrossRef] [PubMed]
  6. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010).
    [CrossRef] [PubMed]
  7. P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).
  8. J. Castro, D. Zhang, B. Myer, and R. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010).
    [CrossRef] [PubMed]
  9. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
    [CrossRef]
  10. R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
    [CrossRef]
  11. Teledyne Scientific & Imaging, “Optofluidic solar concentrators,” ARPA (2010).
  12. M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
    [CrossRef]
  13. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
    [CrossRef] [PubMed]
  14. A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
    [CrossRef]
  15. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
    [CrossRef] [PubMed]
  16. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [CrossRef] [PubMed]
  17. Schott BG39 “ http://www.schott.com/advanced_optics/english/download/schott_bandpass_bg39_2008_e.pdf ”.
  18. W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
    [CrossRef]
  19. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011).
    [CrossRef] [PubMed]
  20. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51, 6117–6124 (2012).
    [CrossRef] [PubMed]

2012 (2)

2011 (4)

F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011).
[CrossRef] [PubMed]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
[CrossRef] [PubMed]

W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[CrossRef]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (1)

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

2007 (2)

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

2006 (1)

2004 (1)

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

1978 (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978).
[CrossRef]

1958 (1)

H. Tabor, “Stationary mirror systems for solar collectors,” Sol. Energy 2, 27–33 (1958).
[CrossRef]

Abrinia, K.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Baker, K.

Baker, K. A.

Benitez, P.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor & Francis, CRC Press, London, 2004) chap. 13.
[CrossRef]

Bossart, O.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Calzaferri, G.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Castro, J.

Clifford, M. J.

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

Duerr, F.

Eastwood, D.

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

Ford, J. E.

Golub, I.

Hallas, J. M.

Hsu, H.

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

Hu, W.

W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[CrossRef]

Ishii, K.

W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[CrossRef]

Jamshidi, A.

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

Javadi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Karp, J. H.

Keyhani, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Koeppe, R.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Kostuk, R.

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Meuret, Y.

Minano, J. C.

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor & Francis, CRC Press, London, 2004) chap. 13.
[CrossRef]

Mobli, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Mousazadeh, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Myer, B.

Neuman, S.

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978).
[CrossRef]

Ohta, A.

W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[CrossRef]

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

Reisfeld, R.

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978).
[CrossRef]

Sariciftci, N. S.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Schmaelzle, P.

P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).

Sharifi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Tabor, H.

H. Tabor, “Stationary mirror systems for solar collectors,” Sol. Energy 2, 27–33 (1958).
[CrossRef]

Tam, H.-Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Thienpont, H.

Tremblay, E. J.

Valley, J.

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Whiting, G.

P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).

Wu, M.

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

Zhang, D.

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007).
[CrossRef]

W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011).
[CrossRef]

ARPA (1)

Teledyne Scientific & Imaging, “Optofluidic solar concentrators,” ARPA (2010).

Lab Chip (1)

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011).
[CrossRef] [PubMed]

Nature (1)

R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009).
[CrossRef]

Sol. Energy (2)

M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[CrossRef]

H. Tabor, “Stationary mirror systems for solar collectors,” Sol. Energy 2, 27–33 (1958).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Other (3)

P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor & Francis, CRC Press, London, 2004) chap. 13.
[CrossRef]

P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).

Schott BG39 “ http://www.schott.com/advanced_optics/english/download/schott_bandpass_bg39_2008_e.pdf ”.

Supplementary Material (1)

» Media 1: AVI (2871 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of the opto-fluidic concentrator. (a) Light is focused to a ring inside the waveguide. (b) Once a bubble is generated, light is reflected from the bubble by TIR and coupled into the waveguide.

Fig. 2
Fig. 2

Theoretical target space: a scale invariant volume space that defines all parameters dependent on the coupling efficiency (a) Efficiency > 50%, (b) Efficiency > 90%. The inset in (a) shows our demonstration system while the inset in (b) shows a solution for 100% coupling efficiency (neglecting scattering and Fresnel reflections).

Fig. 3
Fig. 3

Simulation results on the coupling efficiency in an off-axis illumination configuration as a function of the light’s incident angle.

Fig. 4
Fig. 4

Schematic of the setup. Two lasers are co-propagating and focused on the IR absorbing glass.

Fig. 5
Fig. 5

(a) Photograph of the experimental fluidic chamber. The BG39 is clearly visible (blue glass). (b) Photograph showing the bubble and the focus ring for illustrating purposes.

Fig. 6
Fig. 6

(a) Experiment: Bubble size for specific power levels, as a function of time for an existing bubble. (b) Experiment vs. Simulation: Light reaching Detector vs. Bubble size.

Fig. 7
Fig. 7

Illustration of the tracking of a vapor bubble ( Media 1).

Metrics