Abstract

Dye-sensitized solar cells (DSSCs) are inexpensive to manufacture and easy to process in comparison with silicone solar cells, but they are difficult to commercialize due to their low efficiency. Accordingly, the aim of this study was to improve the efficiency of a DSSC via an aluminum film reflective plate, reusing discarded light after it was absorbed. We found that the factor having the most dominant influence on DSSC efficiency was the amount of radiation reacting with the dye. For a reflective plate with Ɵ = 30° and h = 15 mm, DSSC efficiency was increased about three times.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem.164(1–3), 3–14 (2004).
    [CrossRef]
  2. Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).
  3. A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
    [CrossRef]
  4. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
    [CrossRef] [PubMed]
  5. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
    [CrossRef]
  6. N. G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Stat. Sol. A-Appl. Mater. Sci.205(8), 1895–1904 (2008).
  7. Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
    [CrossRef]
  8. Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
    [CrossRef]
  9. H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
    [CrossRef]
  10. S. C. Choi, E. N. Cho, S. M. Lee, Y. W. Kim, and D. W. Lee, “Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens,” Opt. Express19(S4), A818–A823 (2011).
    [CrossRef] [PubMed]
  11. D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(S2), A168–A176 (2012).
    [CrossRef] [PubMed]

2012

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

D. W. Liu, I. C. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, “Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,” Opt. Express20(S2), A168–A176 (2012).
[CrossRef] [PubMed]

2011

S. C. Choi, E. N. Cho, S. M. Lee, Y. W. Kim, and D. W. Lee, “Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens,” Opt. Express19(S4), A818–A823 (2011).
[CrossRef] [PubMed]

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

2008

N. G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Stat. Sol. A-Appl. Mater. Sci.205(8), 1895–1904 (2008).

2006

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

2005

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

2004

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem.164(1–3), 3–14 (2004).
[CrossRef]

Bianco, S.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Cai, X.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Chen, H. W.

Chen, J. Z.

Cheng, I. C.

Chiang, C. C.

Chiba, Y.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Chiodoni, A.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Cho, E. N.

Choi, S. C.

Chu, Z.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

De Angelis, F.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Fantacci, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Fu, Y.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Giuri, E.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Grätzel, M.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem.164(1–3), 3–14 (2004).
[CrossRef]

Guo, B.

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

Hagfeldt, A.

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

Han, L.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Ho, K. C.

Huang, X.

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Islam, A.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Ito, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Kim, K.

N. G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Stat. Sol. A-Appl. Mater. Sci.205(8), 1895–1904 (2008).

Kim, Y. W.

Kloo, L.

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

Koide, N.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Komiya, R.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Lamberti, A.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Lee, D. W.

Lee, S. M.

Li, D.

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Li, Y.

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

Liska, P.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Liu, D. W.

Luo, Y.

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Lv, Z.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Meng, Q.

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Nazeeruddin, M. K.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Nonomura, K.

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

Park, N. G.

N. G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Stat. Sol. A-Appl. Mater. Sci.205(8), 1895–1904 (2008).

Pettersson, H.

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

Quaglio, M.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Sacco, A.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Selloni, A.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Takeru, B.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Tresso, E.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Viscardi, G.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Wang, D.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Watanabe, Y.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Wei, M.

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

Wu, H.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Zhang, H.

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

Zhang, Y.

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Zou, D.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Electron. Ac.

Y. Li, H. Zhang, B. Guo, and M. Wei, “Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition,” Electron. Ac.70, 313–317 (2012).
[CrossRef]

Ener. Enviro. Sci.

H. Pettersson, K. Nonomura, L. Kloo, and A. Hagfeldt, “Trends in patent applications for dye-sensitized solar cells,” Ener. Enviro. Sci.5(6), 7376–7380 (2012).
[CrossRef]

J. Am. Chem. Soc.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc.127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

J. Photochem. Photobiol. Chem.

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem.164(1–3), 3–14 (2004).
[CrossRef]

J. Photon.

Z. Lv, H. Wu, X. Cai, Y. Fu, D. Wang, Z. Chu, and D. Zou, “Influence of electrolyte refreshing on the photoelectrochemical performance of fiber-shaped dye-sensitized solar cells,” J. Photon.2012, 1045979 (2012).

Jpn. J. Appl. Phys.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys.45(25), 638–640 (2006).
[CrossRef]

Mic. Eng.

A. Lamberti, A. Sacco, S. Bianco, E. Giuri, M. Quaglio, A. Chiodoni, and E. Tresso, “Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture,” Mic. Eng.88(8), 2308–2310 (2011).
[CrossRef]

Opt. Express

Phys. Stat. Sol. A-Appl. Mater. Sci.

N. G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Stat. Sol. A-Appl. Mater. Sci.205(8), 1895–1904 (2008).

Sol. Energy Mater. Sol. Cells

Y. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Sol. Energy Mater. Sol. Cells98, 417–423 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Reflective condenser plate design.

Fig. 2
Fig. 2

(a) Manufactured reflectors with a fixed area of incident light. (b) Manufactured reflectors with various of incident light.

Fig. 3
Fig. 3

(a) Test apparatus used to measure characteristics of dye-sensitized solar cell. (b) Fabricated DSSC.

Fig. 4
Fig. 4

Light simulation result for a fixed area of incident sunlight.

Fig. 5
Fig. 5

(a) Experimental schematic for a fixed area of incident light. (b) Experimental schematic for varying areas of incident light. (c) Concept of test apparatus used to measure characteristics of a DSSC.

Fig. 6
Fig. 6

Efficiency-curves of DSSC with respect to the reflective area

Fig. 7
Fig. 7

Light simulations for a fixed vertical height of the reflector.

Fig. 8
Fig. 8

Efficiency-curves of the DSSC with respect to the incident sunlight area.

Fig. 9
Fig. 9

Efficiency-curves of the DSSC with respect to the amount of sunlight reacting the dye.

Tables (5)

Tables Icon

Table 1 Efficiency of DSSC with a fixed area of incident sunlight

Tables Icon

Table 2 Efficiency of DSSC according to the reflective area

Tables Icon

Table 3 Efficiency of DSSC with varying areas of incident sunlight

Tables Icon

Table 4 Schematics of the incident sunlight area and the efficiency of DSSC

Tables Icon

Table 5 Efficiency of DSSC according to the amount of sunlight reacting with the dye

Metrics