Abstract

We present an investigation on introducing core-shell Au@PVP nanoparticles (NPs) into dye-sensitized solar cells. As a novel core-shell NPs structure, Au@PVP present not only the chemical stability to iodide/triiodide electrolyte, but also the adhesiveness to dye molecules, which could help to localize most of dye molecules around plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the device. We obtain a PCE enhancement of 30% from 3.3% to 4.3% with incorporation of Au@PVP NPs. Moreover, the device performance with different concentration of Au@PVP NPs from 0 to 12.5 wt% has been studied, and we draw the conclusion that the performance of DSCs could be well improved through enhancing the light absorption by local surface plasmon (LSP) effect from Au@PVP NPs with an optimized concentration.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991).
    [CrossRef]
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
    [CrossRef]
  3. M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001).
    [CrossRef] [PubMed]
  4. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003).
    [CrossRef]
  5. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
    [CrossRef] [PubMed]
  6. R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
    [CrossRef]
  7. H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
    [CrossRef]
  8. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
    [CrossRef] [PubMed]
  9. L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
    [CrossRef]
  10. M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
    [CrossRef]
  11. E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
    [CrossRef] [PubMed]
  12. C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
    [CrossRef]
  13. M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
    [CrossRef]
  14. K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
    [CrossRef]
  15. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
    [CrossRef]
  16. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
    [CrossRef] [PubMed]
  17. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
    [CrossRef] [PubMed]
  18. G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
    [CrossRef]
  19. C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
    [CrossRef]
  20. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
    [CrossRef] [PubMed]
  21. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
    [CrossRef] [PubMed]
  22. C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
    [CrossRef]
  23. P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
    [CrossRef]
  24. P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984).
    [CrossRef]
  25. H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
    [CrossRef]
  26. A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
    [CrossRef]
  27. D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
    [CrossRef]
  28. A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
    [CrossRef]
  29. S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
    [CrossRef]
  30. B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
    [CrossRef]
  31. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
    [CrossRef]
  32. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
    [CrossRef]

2012 (2)

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

2011 (6)

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
[CrossRef]

2010 (2)

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
[CrossRef]

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

2009 (7)

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
[CrossRef]

2008 (1)

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

2007 (1)

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

2004 (1)

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

2003 (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003).
[CrossRef]

2001 (1)

M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

1999 (1)

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

1997 (3)

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
[CrossRef]

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

1993 (1)

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

1991 (1)

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991).
[CrossRef]

1984 (2)

P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
[CrossRef]

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984).
[CrossRef]

1963 (1)

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Alibabaei, L.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Alvarez-Puebla, R.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
[CrossRef]

Belcher, A. M.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Bingham, J. M.

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

Blaber, M. G.

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

Brown, M. D.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Chang, W. S.

L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
[CrossRef]

Chen, C. Y.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Chen, H.

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

Choi, H.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

D’Innocenzo, V.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Dang, X.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Das, S.

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

Decoppet, J. D.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

DeMarco, E. J.

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

Enustun, B. V.

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Fatiadi, A. J.

P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
[CrossRef]

Fernández-Domínguez, A. I.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

Fox, M. A.

P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
[CrossRef]

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984).
[CrossRef]

Frank, A. J.

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

Garcia de Abajo, F. J.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
[CrossRef]

Grätzel, C.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Grätzel, M.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003).
[CrossRef]

M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001).
[CrossRef] [PubMed]

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Hagglund, C.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Hammond, P. T.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Henry, A. I.

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

Honma, I.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

Hotchandani, S.

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

Huang, D. M.

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

Huang, S. Y.

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

Humphry-Baker, R.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Hupp, J. T.

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Ihara, M.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

Ishikawa, K.

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

Jung, D. R.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Kaiser, M.

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

Kamat, P. V.

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
[CrossRef]

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984).
[CrossRef]

Kasemo, B.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Kay, A.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Khazraji, A. C.

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
[CrossRef]

Kim, C.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Kim, J.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Kishima, M.

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

Klesper, H.

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

Koh, A. L.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

Kozuka, H.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
[CrossRef]

Kumar, R. S. S.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Le Formal, F.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

Lee, B.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Lee, M. M.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Li, J. Y.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Link, S.

L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
[CrossRef]

Liska, P.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Liz-Marzan, L. M.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
[CrossRef]

Maier, S. A.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

Meerholz, K.

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

Moon, J.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Moulé, A. J.

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

Mueller, E.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Murakoshi, K.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

Nabika, H.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

Nagasawa, F.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

Nahm, C.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Nazeeruddin, M. K.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Ngoc-le, C. H.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Noguez, C.

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Nozik, A. J.

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

Okubo, T.

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

O'Regan, B.

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991).
[CrossRef]

Park, B.

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

Petrozza, A.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Pootrakulchote, N.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Qi, J.

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Ratner, M. A.

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

Rodicio, I.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Sakaki, K.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

Schatz, G. C.

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Schlichthörl, G.

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

Slaughter, L.

L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
[CrossRef]

Snaith, H. J.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
[CrossRef]

Standridge, S. D.

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
[CrossRef]

Suteewong, T.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Takase, M.

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

Tanaka, K.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

Thimsen, E.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

Tsai, J. H.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Turkevich, J.

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Van Duyne, R. P.

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

Vlachopoulos, N.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

Wang, M.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Warren, S. C.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

Wen, C.

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

Wen, C. J.

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

Wiesner, U.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Wu, C. G.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Yamada, K.

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

Yang, J. K. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

Yoko, T.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
[CrossRef]

Zach, M.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

Zakeeruddin, S. M.

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

Zhao, G.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
[CrossRef]

ACS Nano (2)

C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS Nano3(10), 3103–3109 (2009).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Through Metal@Oxide Core@Shell Nanostructure,” ACS Nano5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett.99(25), 253107 (2011).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced Charge Carrier Generation in Dye Sensitized Solar Cells by Nanoparticle Plasmons,” Appl. Phys. Lett.92(1), 013113 (2008).
[CrossRef]

J. Am. Chem. Soc. (4)

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers(X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc.115(14), 6382–6390 (1993).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

P. V. Kamat, M. A. Fox, and A. J. Fatiadi, “Dye-loaded polymer electrodes. 2. Photoelectrochemical sensitization by croconate violet in polymer films,” J. Am. Chem. Soc.106(5), 1191–1197 (1984).
[CrossRef]

J. Appl. Phys. (2)

A. J. Moulé, H. J. Snaith, M. Kaiser, H. Klesper, D. M. Huang, M. Grätzel, and K. Meerholz, “Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties,” J. Appl. Phys.106(7), 073111 (2009).
[CrossRef]

D. M. Huang, H. J. Snaith, M. Grätzel, K. Meerholz, and A. J. Moulé, “Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency,” J. Appl. Phys.106(7), 073112 (2009).
[CrossRef]

J. Chem. Eng. of Jpn (1)

K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance,” J. Chem. Eng. of Jpn37(5), 645–649 (2004).
[CrossRef]

J. Photochem. Photobiol. Photochem. Rev. (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev.4(2), 145–153 (2003).
[CrossRef]

J. Phys. Chem. (1)

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem.88(11), 2297–2302 (1984).
[CrossRef]

J. Phys. Chem. B (3)

A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, “controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization,” J. Phys. Chem. B103(22), 4693–4700 (1999).
[CrossRef]

S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B101(14), 2576–2582 (1997).
[CrossRef]

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,20-bipyridyl-4,40-dicarboxylate) ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B101(26), 5153–5157 (1997).
[CrossRef]

J. Phys. Chem. C (3)

M. G. Blaber, A. I. Henry, J. M. Bingham, G. C. Schatz, and R. P. Van Duyne, “LSPR Imaging of Silver Triangular Nanoprisms: Correlating Scattering with Structure Using Electrodynamics for Plasmon Lifetime Analysis,” J. Phys. Chem. C116(1), 393–403 (2012).
[CrossRef]

C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

H. Chen, M. G. Blaber, S. D. Standridge, E. J. DeMarco, J. T. Hupp, M. A. Ratner, and G. C. Schatz, “Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell,” J. Phys. Chem. C116(18), 10215–10221 (2012).
[CrossRef]

J. Phys. Chem. Lett. (3)

L. Slaughter, W. S. Chang, and S. Link, “Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy,” J. Phys. Chem. Lett.2(16), 2015–2023 (2011).
[CrossRef]

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light Concentration at the Nanometer Scale,” J. Phys. Chem. Lett.1(16), 2428–2434 (2010).
[CrossRef]

H. Nabika, M. Takase, F. Nagasawa, and K. Murakoshi, “Toward Plasmon-Induced Photoexcitation of Molecules,” J. Phys. Chem. Lett.1(16), 2470–2487 (2010).
[CrossRef]

Langmuir (1)

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles Via Atomic Layer Deposition of TiO2.,” Langmuir25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

Nano Lett. (3)

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on Tthe photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11(1), 35–43 (2011).
[CrossRef] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold Nanostructures,” Nano Lett.11(3), 1323–1330 (2011).
[CrossRef] [PubMed]

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles,” Nano Lett.11(2), 438–445 (2011).
[CrossRef] [PubMed]

Nature (2)

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature353(6346), 737–740 (1991).
[CrossRef]

M. Grätzel, “Photoelectrochemical cells,” Nature414(6861), 338–344 (2001).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method,” Sol. Energy Mater. Sol. Cells46(3), 219–231 (1997).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of Silver Particles on the Photovoltaic Properties of Dye-Sensitized TiO2 Thin Films,” Sol. Energy Mater. Sol. Cells61(4), 339–351 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structures and mechanisms of plasmonic enhanced DSCs with core-shell Au@PVP NPs. (a) Structures of core-shell Au@PVP NPs and plasmonic enhanced DSCs. (b) Mechanisms of LSP from Au@PVP NPs enhancing dye absorption.

Fig. 2
Fig. 2

Investigation on spatial properties of light trapping by LSP effect. (a) The intensity of electrical field |E|2 of plasmonic Au@PVP NPs in TiO2 layer with an incident planewave at λ0 = 600nm. (b) Optical absorption enhancement versus the distance from surface of Au@PVP NPs

Fig. 3
Fig. 3

Scanning electron microscopy (SEM) images of Au@PVP core-shell NPs before (a) and after (b) sonication.

Fig. 4
Fig. 4

Investigation of the chemical stability of Au/Au@PVP NPs. (a) Appearance variation tendency of Au and Au@PVP colloidal NPs versus time after mixed with electrolyte. (b) Optical absorption of bare Au NPs before/after mixed with electrolyte. (c) Optical absorption of Au@PVP NPs before/after mixed with electrolyte.

Fig. 5
Fig. 5

LSP enhancement of optical absorption of Au/Au@PVP NPs and dye molecules in solution. (a) Optical absorption spectra of Au NPs, Au@PVP NPs, N719 dye molecules, mixture of Au NPs and dye, mixture of Au@PVP and dye in ethanol solution. (b) Net changes of dye absorption (ΔOA) due to the presence of Au/Au@PVP NPs in solution. (c) Relative changes of dye absorption (Δα/α) due to the presence of Au/Au@PVP NPs in solution. For the calculation of ΔOA and Δα/α: Δα/α = ΔOA(λ)/OAdye(λ) = (OAdye,Au/Au@PVP(λ)-OAdye(λ)-OAAu/Au@PVP(λ))/OAdye(λ), Where OAdye(λ),OAAu/Au@PVP(λ),and OAdye,Au/Au@PVP(λ) are the optical absorption at wavelength λ of pure dye solution, Au/Au@PVP NPs solution, and their mixture solution with the same concentrations of dye and Au/Au@PVP NPs, respectively.

Fig. 6
Fig. 6

Performance of TiO2-only DSCs and core-shell NPs enhanced DSCs. (a) The photocurrent density-voltage characteristics (J-V curves) of TiO2-only DSCs and core-shell NPs enhanced DSCs with different concentration of Au@PVP NPs with the same photoanode thickness of 3μm. (b) Dependence of power conversion efficiency (PCE) on the concentration of Au@PVP NPs in TiO2 photoanode with the same thickness of 3 μm. Here, four groups of Au@PVP NPs in different concentrations of 0 wt%, 2.5wt%, 7.5wt% and 12.5wt% are prepared and the PCE results are obtained from an average value of at least 6 samples for each concentration.

Fig. 7
Fig. 7

Spectral responses of TiO2-only DSCs and core-shell NPs enhanced DSCs with the same photoanode thickness of 3μm. (a) IPCE spectra of TiO2-only DSCs and core-shell NPs enhanced DSCs with different concentration of Au@PVP NPs. (b) the IPCE enhancement ratio of TiO2-only DSCs and core-shell NPs enhanced DSCs with different concentration of Au@PVP NPs. IPCE enhancement ratio=(IPCEcore-shell NPs (λ)-IPCETiO2-only(λ))/IPCETiO2-only(λ) •100%, where IPCEcore-shell NPs (λ) and IPCETiO2-only(λ) are the IPCE at wavelength λ for core-shell NPs enhanced DSCs and TiO2-only DSCs, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(r)= 1 2 ω ε 0 V Im[ε | E(r) | 2 ]dV V(r)
OAE(r)= A with Au@PVP (r) A without Au@PVP (r)

Metrics