Abstract

Simulations of thin film (~2.5 µm thick) InGaAs/GaAs quantum well solar cells with various back side reflective and planar, symmetric scattering structures used for light trapping have been performed using rigorous coupled-wave analysis. Two-dimensional periodic metal/dielectric scattering structures were numerically optimized for Airmass 0 photocurrent generation for each device structure. The simulation results indicate that the absorption spectra of devices with both reflective and scattering structures are largely determined by the Fabry-Perot resonance characteristics of the thin film device structure. The scattering structures substantially increase absorption in the quantum wells at wavelengths longer than the GaAs absorption edge through a combination of coupling to modes of the thin film device structures and by reducing parasitic metal absorption compared to planar metal reflectors. For Airmass 0 illumination and 100% carrier collection, the estimated short-circuit current density of devices with In0.3Ga0.7As/GaAs quantum wells improves by up to 4.6 mA/cm2 (15%) relative to a GaAs homojunction device, with the improvement resulting approximately equally from scattering of light into thin film modes and reduction of metal absorption compared to a planar reflective layer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  2. M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
    [CrossRef]
  3. J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
    [CrossRef]
  4. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
    [CrossRef]
  5. A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
    [CrossRef]
  6. R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
    [CrossRef]
  7. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
    [CrossRef]
  8. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
    [CrossRef]
  9. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
    [CrossRef]
  10. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
    [CrossRef] [PubMed]
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  12. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
    [CrossRef]
  13. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express18(26), 27589–27605 (2010).
    [CrossRef] [PubMed]
  14. G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
    [CrossRef]
  15. S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
    [CrossRef]
  16. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
    [CrossRef]
  17. M. Zeman and J. Krc, “Nano-structures for light management in optoelectronic devices,” Proc. 6th Intl. Conf. on Adv. Semicond. Devices and Microsystems, Smolenice, Slovakia, pp. 299–302 (2006).
  18. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
    [CrossRef]
  19. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
    [CrossRef]
  20. E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011).
    [CrossRef]
  21. I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
    [CrossRef]
  22. A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
    [CrossRef]
  23. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
    [CrossRef]
  24. J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
    [CrossRef]
  25. D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
    [CrossRef]
  26. C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
    [CrossRef]
  27. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, 1991), Chap. 7.
  28. M. Fox, Optical Properties of Solids (Oxford University Press, 2001), Chap. 1.
  29. RSoft Design Group, DiffractMOD User Guide (v. 3.2), (2011) p. 39.
  30. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  31. C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
    [CrossRef]
  32. C. J. Hwang, “Optical properties of n-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
    [CrossRef]
  33. E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984).
    [CrossRef]
  34. H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
    [CrossRef]
  35. G. J. Bauhuis, P. Mulder, J. J. Schermer, E. J. Haverkamp, J. van Deelen, and P. K. Larsen, “High efficiency thin film GaAs solar cells with improved radiation hardness,” Proc. 20th European Photovolt. Solar Energy Conf., pp. 468–471 (2005).
  36. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
    [CrossRef]
  37. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
    [CrossRef]
  38. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter35(14), 7454–7463 (1987).
    [CrossRef] [PubMed]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  40. B. J. Soller and D. G. Hall, “Energy transfer at optical frequencies to silicon-based waveguiding structures,” J. Opt. Soc. Am. A18(10), 2577–2584 (2001).
    [CrossRef] [PubMed]
  41. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
    [CrossRef]
  42. J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
    [CrossRef]
  43. Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
    [CrossRef]
  44. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  45. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006) p.206.
  46. A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. Chem.13, 4323–4334 (1980).
  47. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982).
    [CrossRef]
  48. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  49. A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
    [CrossRef]

2012 (3)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

2011 (4)

E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011).
[CrossRef]

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

2010 (3)

2009 (3)

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

2008 (3)

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

2007 (5)

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

2006 (2)

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
[CrossRef]

2005 (2)

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

2002 (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (2)

S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
[CrossRef]

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

1997 (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

1993 (1)

J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
[CrossRef]

1992 (1)

Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
[CrossRef]

1987 (2)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter35(14), 7454–7463 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

1985 (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

1984 (1)

E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984).
[CrossRef]

1982 (1)

1980 (1)

A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. Chem.13, 4323–4334 (1980).

1973 (1)

H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
[CrossRef]

1969 (1)

C. J. Hwang, “Optical properties of n-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Adachi, S.

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter35(14), 7454–7463 (1987).
[CrossRef] [PubMed]

Adams, J. G. J.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Alemu, A.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
[CrossRef]

Alivisatos, A. P.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Bailey, C. G.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Bailey, S. G.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Ballard, I. M.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Barnham, K. W. J.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Bauhuis, G. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Bayram, C.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Bedell, S. W.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Bessiere, A.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Bester, G.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Bhat, R.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

Bhattacharya, P. K.

Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
[CrossRef]

Bhusal, L.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Bremner, S. P.

S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
[CrossRef]

Browne, B. C.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Calder, C.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Casey, H. C.

H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
[CrossRef]

Chan, N. L. A.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Chen, W. V.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Chen, Y. C.

Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
[CrossRef]

Coaquira, J. A. H.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
[CrossRef]

Cockayne, D. J. H.

J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
[CrossRef]

Connolly, J. P.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Corkish, R.

S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
[CrossRef]

Cress, C. D.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Cruz, S. C.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

DenBaars, S. P.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Derkacs, D.

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Diaz, P.

E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984).
[CrossRef]

Dittmer, J. J.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Ebert, C.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Ekins-Daukes, N. J.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Elder, W.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

El-Emawy, M.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Farrell, R. M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Feltrin, A.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Fogel, K.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Forbes, D. V.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

Forrest, S. R.

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

Fotkatzikis, A.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Freundlich, A.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
[CrossRef]

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Gaynes, M.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Giebink, N. C.

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

Gmitter, T.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

Gokmen, T.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Hall, D. G.

Hanna, M. C.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Harbison, J. P.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

Haverkamp, E.

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Haverkamp, E. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

Hekmatshoar, B.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Hill, C. J.

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

Hill, G.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Honsberg, C. B.

S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
[CrossRef]

Hu, D.

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

Hubbard, S. M.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Huffaker, D. L.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Huijben, J. C. C. M.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

Huynh, W. U.

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Hwang, C. J.

C. J. Hwang, “Optical properties of n-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

Ioannides, A.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Iza, M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Johnson, D. C.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Keller, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Kupec, J.

Laghumavarapu, R. B.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Lang, J. R.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Larsen, P. K.

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Lauro, P.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

Lester, L. F.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Lim, S. H.

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Luque, A.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Lynch, M. C.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Martí, A.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Matheu, P. M.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Mazzer, M.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

McPheeters, C. O.

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

Miller, B. I.

H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
[CrossRef]

Mishra, U. K.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Monier, C.

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

Moscho, A.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Mulder, P.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Nakamura, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Neufeld, C. J.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Norman, A. G.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Nozik, A. J.

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

Nuntawong, N.

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

Ott, J. A.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Pinkas, E.

H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
[CrossRef]

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Popescu, V.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Radhakrishnan, G.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Raffaelle, R. P.

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Roberts, J. S.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

Sadana, D. K.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Saxena, A. K.

A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. Chem.13, 4323–4334 (1980).

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Schaadt, D. M.

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

Schermer, J. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Serdiukova, I.

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

Shahrjerdi, D.

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

Shiu, K.-T.

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Singh, J.

Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
[CrossRef]

Soller, B. J.

Speck, J. S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Stavrinou, P. N.

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Stoop, R. L.

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Tibbits, T. N. D.

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Ting, D. Z.

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Usher, B. F.

J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
[CrossRef]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

van de Lagemaat, J.

E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011).
[CrossRef]

van Deelen, J.

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

Vigil, E.

E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984).
[CrossRef]

Vilela, M. F.

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

Voncken, M. M. A. J.

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Wei, G.

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

Williams, L.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Wilt, D. M.

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

Witzigmann, B.

Yablonovitch, E.

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982).
[CrossRef]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Yu, E. T.

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011).
[CrossRef]

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Yu, P. K. L.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Zhu, W.

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

Zou, J.

J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
[CrossRef]

Zunger, A.

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Appl. Phys. Lett. (11)

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011).
[CrossRef]

R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007).
[CrossRef]

S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008).
[CrossRef]

C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007).
[CrossRef]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999).
[CrossRef]

D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012).
[CrossRef]

E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008).
[CrossRef]

Cryst. Res. Technol. (1)

E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999).
[CrossRef]

J. Appl. Phys. (6)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973).
[CrossRef]

C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009).
[CrossRef]

C. J. Hwang, “Optical properties of n-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006).
[CrossRef]

J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993).
[CrossRef]

J. Cryst. Growth (1)

A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007).
[CrossRef]

J. Opt. (2)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012).
[CrossRef]

C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. Chem.13, 4323–4334 (1980).

J. Vac. Sci. Technol. B (1)

Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992).
[CrossRef]

MRS Bull. (2)

A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007).
[CrossRef]

E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011).
[CrossRef]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter35(14), 7454–7463 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Phys. Status Solidi (1)

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a).
[CrossRef]

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011).
[CrossRef]

Science (1)

W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009).
[CrossRef]

Thin Solid Films (1)

M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006).
[CrossRef]

Other (8)

M. Zeman and J. Krc, “Nano-structures for light management in optoelectronic devices,” Proc. 6th Intl. Conf. on Adv. Semicond. Devices and Microsystems, Smolenice, Slovakia, pp. 299–302 (2006).

G. J. Bauhuis, P. Mulder, J. J. Schermer, E. J. Haverkamp, J. van Deelen, and P. K. Larsen, “High efficiency thin film GaAs solar cells with improved radiation hardness,” Proc. 20th European Photovolt. Solar Energy Conf., pp. 468–471 (2005).

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, 1991), Chap. 7.

M. Fox, Optical Properties of Solids (Oxford University Press, 2001), Chap. 1.

RSoft Design Group, DiffractMOD User Guide (v. 3.2), (2011) p. 39.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006) p.206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The polarization-dependent absorption coefficient of an 8 nm In0.3Ga0.7As/GaAs QW for (‘x-, y-polarized’) x- and y-polarized light and for (‘z-polarized’) z-polarized light, according to the coordinates shown in the illustration at right, at wavelengths corresponding to absorption in QW sub-band states (λ > 850 nm) and in the continuum of states (λ ≤ 850 nm). Peaks corresponding to resonant absorption by heavy-hole (‘HH’) and light hole (‘LH’) excitons are labeled, where the number in the exciton designation indicates the QW sub-band in which the exciton is generated. The absorption coefficient was calculated using the semi-empirical approach of Ref [26]. The calculated absorption coefficient spans the wavelength range 300 nm to 1200 nm, of which a subset is shown here to improve the clarity of features at λ > 850 nm.

Fig. 2
Fig. 2

(a) A representative diagram of the simulated device structures, which has a two-dimensional diffractive structure located on its back side with the following parameters defining it: the period in the x and y directions (D1 and D2, respectively); the pitch in those directions, which is collectively determined by W1, W2, L1, and L2; and the height of the grating, H2. The device has an SiO2 anti-reflection coating on the top surface, the thickness of which, H1, is variable in optimizations. (b) Jsc of thin film QWSCs, computed as a function of the GaAs base and emitter thickness and assuming AM 0 illumination. The maximum Jsc over the range of simulated values of 31.7 mA/cm2 is produced for a base thickness of 2.1 µm and an emitter thickness of 0.1 µm.

Fig. 3
Fig. 3

Simulated optical response spectra for a ~2.5 μm QWSC, as illustrated in Fig. 2(a), with QWs composed of 8 nm In0.3Ga0.7As/20 nm GaAs, where the back side geometry consists of (‘Pd reflector’) semi-infinite Pd, (‘SiO2 interlayer-Pd’) 165 nm SiO2 followed by semi-infinite Pd, and (‘Pd-SiO2 diff. struct.’) a Pd-SiO2 diffractive structure or (‘Ag-SiO2 diff. struct.’) a Ag-SiO2 diffractive structure, which were optimized for this QWSC and which have the geometry shown in Fig. 2(a), where W1 = 268 nm, L1 = 800 nm, W2 = 686 nm, L2 = 205 nm, D1 = 1355 nm, D2 = 1070 nm, and H2 = 165 nm. (a) illustrates the complete absorption spectrum of the ‘Pd-SiO2 diff. struct.’ device and the wavelengths at which resonant absorption by heavy hole (‘HH’) and light hole (‘LH’) excitons occurs are marked. (b) illustrates the absorption spectra of QWSCs with each of the Pd-based back side geometries at wavelengths longer than the nominal GaAs absorption edge (850 nm). (c) illustrates the reflectivity (‘R’) and the net absorption (‘1-R’), which includes loss due to metal absorption, when the Pd-SiO2 diffractive structure was used. (d) illustrates the absorption spectrum of a QWSC with a diffractive structure made of Ag and SiO2.

Fig. 4
Fig. 4

(a) Cross-sectional plots at x = 0 [i.e., through the center of the unit cell of the diffractive structure shown in Fig. 2(a)] of the Ez component of the electric field in the ~2.5 μm QWSC structure, at incident wavelengths of 860 nm and (b) 1105 nm. The incident field is polarized in the x-y plane, so Ez corresponds to a component of the diffracted field, which is seen to couple to a high order waveguide mode for λ = 860 nm, and to a lower order mode for λ = 1105 nm. (b) An illustration of different device structures that were used in RCWA simulations to determine how Jsc of a QWSC with six periods of {λ nm In0.3Ga0.7As / t nm GaAs} varies according to the position of QWs in the device, dQW, where λ is the thickness of the QW and t is the thickness of the QW barrier. The total thickness of the device is the same for each simulated structure (~2.5 µm). All of the illustrations in this figure correspond to λ = 8 nm and t = 20 nm. The device is integrated with an optimized Pd-SiO2 diffractive structure similar to the one illustrated in Fig. 2(a).

Fig. 5
Fig. 5

Variation of the AM 0 Jsc of devices with optimized back side diffractive structures as a function of the thickness of the depth of the multi-QW structure from the GaAs emitter, dQW, for selected values of the InGaAs QW thickness, λ, and the GaAs barrier thickness, t, as illustrated in Fig. 4(b). (a,c) illustrate the full range of dQW that was simulated for t = 20 nm and t = 40 nm, respectively, while (b,d) focus on device structures where the multi-QW layer is located near the top of the active layers, also for t = 20 nm and t = 40 nm, respectively.

Fig. 6
Fig. 6

The simulated AM 0 Jsc as a function of QW composition (x in InxGa1-xAs) for ~2.5 μm thick QWSCs, for x = 0.12, 0.20, and 0.30. (a) InGaAs/GaAs QWSCs were simulated with different back side geometries: a planar Pd reflector/contact (‘Pd reflector’); a planar Ag reflector/contact (‘Ag reflector’); and optimized diffractive structures that consist of Pd and SiO2 (‘Pd-SiO2 diff. struct.’) or Ag and SiO2 (‘Ag-SiO2 diff. struct.’). (b) The data designated by the prefix “GaAs w/” is the same as that shown in (a) for the specified back side geometries. The data designated by the prefix “AlGaAs w/” corresponds to simulations of device structures equivalent to the “GaAs w/” devices, but where all GaAs in the device was replaced by Al0.29Ga0.71As. Devices were simulated with two of the same back side geometries as in (a): a planar Ag reflector/contact (‘Ag reflector’) or with optimized diffractive structures that consist of Ag and SiO2 (‘Ag-SiO2 diff. struct.’).

Tables (2)

Tables Icon

Table 1 AM 0 Jsc (mA/cm2) of InGaAs/GaAs devicesa

Tables Icon

Table 2 AM 0 Jsc (mA/cm2) of InGaAs/AlGaAs and InGaAs/GaAs devicesb

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A s (λ)= ω 2 V S ε 2 (ω,r) | E(r) | 2 dr,
j(λ)= Φ ph × A S (λ)× η C (λ).
J sc = j(λ)dλ.

Metrics