Abstract

The temperature dependent optical parameters n and k of amorphous silicon deposited by electron beam evaporation were determined at the wavelength of 808 nm. This was achieved by fitting an optical model of the layer system to reflection values of a fs-laser beam. From n(T) and k(T) the absorption of a-Si layers as depending on thickness and temperature were calculated for this diode laser wavelength. By heating the layers to 600 °C the absorption can be increased by a factor of 4 as compared to room temperature, which allows for diode laser crystallization of layers down to 80 nm in thickness.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Falk and G. Andrä, Solar Cells—Thin-Film Technologies (Intech 2011), Chap. 7: “Crystalline silicon thin film solar cells,” http://www.intechopen.com/books/solar-cells-thin-film-technologies .
  2. G. Andrä, T. Gimpel, A. Gawlik, E. Ose, A. Bochmann, S. Christiansen, G. Sáfrán, J. L. Lábár, and F. Falk, “Epitaxial growth of silicon thin films for solar cells,” in Proc. 23rd European Photovoltaic Solar Energy Conf. (WIP, Munich, 2008), pp. 2194–2198.
  3. G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
    [CrossRef]
  4. P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
    [CrossRef]
  5. A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
    [CrossRef]
  6. G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5, 3221–3223 (2008).
  7. M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
    [CrossRef]
  8. N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
    [CrossRef]
  9. J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
    [CrossRef]
  10. G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
    [CrossRef]
  11. G. Andrä, J. Bergmann, A. Gawlik, J. Plentz, I. Höger, T. Schmidt, and F. Falk, “Thin film solar cells based on diode laser crystallized polycrystalline silicon,” in Proc. 26th Europ. Photovoltaic Solar Energy Conf. (WIP Munich 2011), pp. 2803–2806.
  12. X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
    [CrossRef]
  13. B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
    [CrossRef]
  14. O. Stenzel, The Physics of Thin Film Optical Spectra (Springer, 2005), p. 116ff.
  15. G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C: Solid State10(3), 467–477 (1977).
    [CrossRef]
  16. G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett.66(26), 3570–3572 (1995).
    [CrossRef]

2012

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

2010

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

2008

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5, 3221–3223 (2008).

2006

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

2005

P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
[CrossRef]

2004

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

1997

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
[CrossRef]

1995

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett.66(26), 3570–3572 (1995).
[CrossRef]

1977

G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C: Solid State10(3), 467–477 (1977).
[CrossRef]

Aberle, A. G.

P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
[CrossRef]

Andrä, G.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5, 3221–3223 (2008).

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

Baettig, R.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Beaucarne, G.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

Bergmann, J.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

Bochmann, A.

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Browning, N. D.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Brunner, R.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Christiansen, S.

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Duerinckx, F.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

Evans, J. E.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Falk, F.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5, 3221–3223 (2008).

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

Gawlik, A.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Ghosh, G.

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett.66(26), 3570–3572 (1995).
[CrossRef]

Grigoropoulos, C. P.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
[CrossRef]

Höger, I.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

Hoyland, J. D.

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

Kim, H. J.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

Kuzma, I.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

LaGrange, T.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Lichtenstein, N.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Lu, J. P.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Maeder, X.

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Mayer, G.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

McGowan, S.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Michler, J.

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Mohammed-Brahim, T.

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

Müller, J.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Niederberger, C.

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Nikolova, L.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Poortmans, J.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

Rosei, F.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Saboundji, A.

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

Sands, D.

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

Schmidl, G.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

Sill, I.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

Siwick, B. J.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Steglich, M.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

Straub, A.

P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
[CrossRef]

Sun, B. K.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
[CrossRef]

Taheri, M. L.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Teslich, N.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

Thutupalli, G. K. M.

G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C: Solid State10(3), 467–477 (1977).
[CrossRef]

Tomlin, S. G.

G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C: Solid State10(3), 467–477 (1977).
[CrossRef]

Valk, B.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Van Nieuwenhuysen, K.

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

Widenborg, P. I.

P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
[CrossRef]

Zhang, X.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
[CrossRef]

Appl. Phys. Lett.

M. L. Taheri, S. McGowan, L. Nikolova, J. E. Evans, N. Teslich, J. P. Lu, T. LaGrange, F. Rosei, B. J. Siwick, and N. D. Browning, “In situ laser crystallization of amorphous silicon: controlled nanosecond studies in the dynamic transmission electron microscope,” Appl. Phys. Lett.97(3), 032102 (2010).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon,” Appl. Phys. Lett.66(26), 3570–3572 (1995).
[CrossRef]

Int. J. Heat Mass Trans.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Trans.40(7), 1591–1600 (1997).
[CrossRef]

J. Appl. Phys.

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

J. Cryst. Growth

P. I. Widenborg, A. Straub, and A. G. Aberle, “Epitaxial thickening of AIC poly-Si seed layers on glass by solid phase epitaxy,” J. Cryst. Growth276(1-2), 19–28 (2005).
[CrossRef]

J. Non-Cryst. Solids

A. Saboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, and F. Falk, “Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization,” J. Non-Cryst. Solids338–340, 758–761 (2004).
[CrossRef]

J. Phys. C: Solid State

G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C: Solid State10(3), 467–477 (1977).
[CrossRef]

Mater. Lett.

G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, and G. Mayer, “Sputtered amorphous silicon thin films for diode laser crystallization,” Mater. Lett.67(1), 229–232 (2012).
[CrossRef]

Phys. Proc.

N. Lichtenstein, R. Baettig, R. Brunner, J. Müller, B. Valk, A. Gawlik, J. Bergmann, and F. Falk, “Scalable, high power line focus diode laser for crystallizing of silicon thin films,” Phys. Proc.5, 109–117 (2010).
[CrossRef]

Phys. Status Solidi C

G. Andrä and F. Falk, “Multicrystalline silicon films with large grains on glass: preparation and applications,” Phys. Status Solidi C5, 3221–3223 (2008).

Thin Solid Films

G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H. J. Kim, and J. Poortmans, “Epitaxial thin-film Si solar cells,” Thin Solid Films511–512, 533–542 (2006).
[CrossRef]

X. Maeder, C. Niederberger, S. Christiansen, A. Bochmann, G. Andrä, A. Gawlik, F. Falk, and J. Michler, “Microstructure and lattice bending in polycrystalline laser-crystallized silicon thin films for photovoltaic applications,” Thin Solid Films519(1), 58–63 (2010).
[CrossRef]

Other

O. Stenzel, The Physics of Thin Film Optical Spectra (Springer, 2005), p. 116ff.

F. Falk and G. Andrä, Solar Cells—Thin-Film Technologies (Intech 2011), Chap. 7: “Crystalline silicon thin film solar cells,” http://www.intechopen.com/books/solar-cells-thin-film-technologies .

G. Andrä, T. Gimpel, A. Gawlik, E. Ose, A. Bochmann, S. Christiansen, G. Sáfrán, J. L. Lábár, and F. Falk, “Epitaxial growth of silicon thin films for solar cells,” in Proc. 23rd European Photovoltaic Solar Energy Conf. (WIP, Munich, 2008), pp. 2194–2198.

G. Andrä, J. Bergmann, A. Gawlik, J. Plentz, I. Höger, T. Schmidt, and F. Falk, “Thin film solar cells based on diode laser crystallized polycrystalline silicon,” in Proc. 26th Europ. Photovoltaic Solar Energy Conf. (WIP Munich 2011), pp. 2803–2806.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical set-up for the measurement of temperature dependent reflectivity (see text).

Fig. 2
Fig. 2

Spectra of a 520 nm thick a-Si film measured by a spectrometer (dots mark every tenth of the measured wavelengths) and fitted spectra for reflection R (blue, dotted), transmission T (red, solid) and absorption A = 1-R-T (black, dash-dotted). The diameter of the points gives a good hint for the accuracy of measurement.

Fig. 3
Fig. 3

Dispersion of n and k of a-Si at room temperature.

Fig. 4
Fig. 4

Reflection spectra of a 520 nm thick a-Si layer on a glass substrate at seven different temperatures. Measured points are connected for clarity.

Fig. 5
Fig. 5

Reflectivity of an a-Si film on borosilicate glass as depending on wavelength at different temperatures (20 °C blue, solid, 270 °C green, dotted, 540 °C red, dashed).The interesting wavelength of 808 nm is marked. Dots are measured values, lines are calculated from the model.

Fig. 6
Fig. 6

Temperature dependence of the refractive index n and the extinction coefficient k of a-Si deposited by electron beam evaporation for the wavelength 808 nm in the temperature range 20 °C to 1100 °C as calculated from the model. The dotted curves show the accuracy limits.

Fig. 7
Fig. 7

Calculated absorption of an a-Si layer on a glass substrate as depending on the layer thickness at 20 °C (blue, solid), 600 °C (red, dashed), and 1000 °C (black, dash-dotted). Inaccuracies limits due to that of n(T) and k(T) dotted.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n(λ)= a (λb) 2 +c k(λ)= d (λe) 2
a=155000n m 2 ,b=220nm,c=3.5,d=1180n m 2 ,e=610nm.
n(T)= n 0 + c n (T T R ) 2 n 0 k(T)= k 0 e c k (T T R )
C n =(4.0±0.2) .10 3 K 1 C k =(3.0±0.3).1 0 3 K 1

Metrics