Abstract

A new method is introduced to evaluate the specific series resistance distribution of solar cells using photoluminescence images under both short circuit and open circuit conditions. An experiment was perfomed to confirm that method is insensitive to the illumination intensity distribution and valid for different illumination levels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
    [CrossRef]
  2. L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
    [CrossRef]
  3. T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
    [CrossRef]
  4. H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
    [CrossRef]
  5. T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
    [CrossRef]
  6. S. O. Kasap, Optoelectronics and photonics: principles and practices (Prentice Hall, 2001).
  7. B. G. Streetman and S. Banerjee, Solid state electronic devices (Prentice Hall, 2000).
  8. M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
    [CrossRef]
  9. S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
    [CrossRef]
  10. T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
    [CrossRef]
  11. R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
    [CrossRef]

2008

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

2007

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
[CrossRef]

2006

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

2005

T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
[CrossRef]

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Abbott, M. D.

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
[CrossRef]

Augarten, Y.

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

Bardos, R. A.

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
[CrossRef]

Bothe, K.

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Brendel, R.

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Canhola, P.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Chen, F. W.

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

Cotter, J. E.

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

Ferreira, I.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Fisher, K. C.

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

Fortunato, E.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Glunz, S. W.

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
[CrossRef]

Herlufsen, S.

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Hinken, D.

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Kampwerth, H.

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

Martins, N.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Martins, R.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Mette, A.

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
[CrossRef]

Pereira, S.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Pink, E.

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

Pysch, D.

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
[CrossRef]

Raniero, L.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Roth, T.

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

Schmidt, J.

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Schubert, M. C.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

Trupke, T.

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
[CrossRef]

Warta, W.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

Weber, J. W.

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

Zhang, S.

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Appl. Phys. Lett.

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, “Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging,” Appl. Phys. Lett.90(9), 093506 (2007).
[CrossRef]

H. Kampwerth, T. Trupke, J. W. Weber, and Y. Augarten, “Advanced luminescence based effective series resistance imaging of silicon solar cells,” Appl. Phys. Lett.93(20), 202102 (2008).
[CrossRef]

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett.89(4), 044107 (2006).
[CrossRef]

T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Appl. Phys. Lett.87(18), 184102 (2005).
[CrossRef]

R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers,” Appl. Phys. Lett.88(5), 053504 (2006).
[CrossRef]

J. Appl. Phys.

M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, “Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells,” J. Appl. Phys.100(11), 114514 (2006).
[CrossRef]

Phys Status Solidi-R

S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, “Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon,” Phys Status Solidi-R2(6), 245–247 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells

D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells91(18), 1698–1706 (2007).
[CrossRef]

L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, “Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell,” Sol. Energy Mater. Sol. Cells87(1-4), 349–355 (2005).
[CrossRef]

Other

S. O. Kasap, Optoelectronics and photonics: principles and practices (Prentice Hall, 2001).

B. G. Streetman and S. Banerjee, Solid state electronic devices (Prentice Hall, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Equivalent circuit of a solar cell.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

The transmission spectrum of the filter for the CCD.

Fig. 4
Fig. 4

(a) Laser illumination pattern on the sample. (b) The intensity distribution along the dashed line in (a). The intensity distribution over the illumination area has a variation as large as 40%.

Fig. 5
Fig. 5

(a) Calculated photovoltage distribution of the solar cell sample, (b) The photovoltage profile along the red dashed line in (a).

Fig. 6
Fig. 6

Using the proposed method, the specific series resistance distribution of a solar cell can be calculated under an average illumination intensity of (a) 0.82 W/cm2 and (b) 0.67 W/cm2. (c) is the result of (a) divided by (b).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i s =qA( D np τ p n0 + D pn τ n p0 ),
i term = i ph i s [ e q( V term i term R s ) ηkT 1 ] V term i term R s R sh .
j s =q( D np τ p n0 + D pn τ n p0 ),
η PL ( x,y )= I PL_int ( x,y ) I illu_int ( x,y ) h ν illu h ν PL = I PL_int ( x,y ) I illu_ext ( x,y )[ 1 R illu ( x,y ) ] h ν illu h ν PL ,
I PL_ext ( x,y )= I PL_int ( x,y )[ 1 R PL ( x,y ) ] η opt ( x,y ),
n ˙ tot ( x,y )=G( x,y )= I illu_int ( x,y ) h ν illu W ,
n ˙ PL,oc ( x,y )= η PL ( x,y )G( x,y ) n ˙ PL,sc ( x,y ) η PL ( x,y )[ G( x,y ) n ˙ i ( x,y ) ]
I PL_int ( x,y )= n ˙ PL ( x,y )h ν PL W
η i ( x,y ) n ˙ i ( x,y ) G( x,y ) =1 n ˙ PL,sc ( x,y ) n ˙ PL,oc ( x,y ) =1 I PL_ext,sc ( x,y ) I PL_ext,oc ( x,y ) .
j sc ( x,y )= i sc A tot η i ( x,y ) x,y η i ( x,y )dxdy ,

Metrics