Abstract

We perform a systematic numerical study to characterize the tradeoff between the plasmonic enhancement and optical loss in periodically aligned, silicon nanowire (SiNW) arrays integrated with a silver back reflector (Ag BR). Optimizing the embedded depth of the wire bottoms into a silver reflector achieved a highly efficient SiNW solar cell. Compared to the SiNW solar cell employing a flat back reflector, the embedded depth of ~20 nm resulted in the relative increase of ~5% in ultimate solar cell efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
    [CrossRef]
  2. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  3. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
    [CrossRef]
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  5. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  6. A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
    [CrossRef]
  7. L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
    [CrossRef]
  8. R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010).
    [CrossRef]
  9. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
    [CrossRef]
  10. F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
    [CrossRef]
  11. U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
    [CrossRef]
  12. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
    [CrossRef]
  13. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
    [CrossRef]
  14. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  15. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  16. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  17. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  18. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
    [PubMed]
  19. K.-T. Park, Z. Guo, H.-D. Um, J.-Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J.-H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011).
    [CrossRef] [PubMed]
  20. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
    [CrossRef]
  21. Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).
  22. J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
    [CrossRef] [PubMed]
  23. J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  26. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
    [CrossRef] [PubMed]
  27. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011).
    [CrossRef] [PubMed]
  28. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009).
    [CrossRef] [PubMed]
  29. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  30. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
    [CrossRef]
  31. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
    [CrossRef]

2012 (2)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
[CrossRef]

J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012).
[CrossRef]

2011 (6)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

K.-T. Park, Z. Guo, H.-D. Um, J.-Y. Jung, J. M. Yang, S. K. Lim, Y. S. Kim, and J.-H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” Opt. Express19(S1Suppl 1), A41–A50 (2011).
[CrossRef] [PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5Suppl 5), A1067–A1081 (2011).
[CrossRef] [PubMed]

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

2010 (6)

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

2009 (4)

J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
[CrossRef]

2008 (5)

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

2004 (2)

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

2003 (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Alamariu, B.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Asatryan, A. A.

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Ballif, C.

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Barrelet, C. J.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Bell, D. C.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Bermel, P.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Bhattacharya, J.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

Biswas, R.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010).
[CrossRef]

Bläsi, B.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Botten, L. C.

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Broderick, K. A.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Campa, A.

A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
[CrossRef]

Carius, R.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Catchpole, K. R.

Chakravarty, N.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, L.

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Cubero, O.

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Cui, Y.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Dalal, V. L.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

de Sterke, C. M.

Dossou, K. B.

Duan, X.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Gösele, U.

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Green, M. A.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
[CrossRef]

Guo, Z.

Hallermann, F.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Haug, F. J.

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Hauser, H.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Hermle, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Hong, C.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huynh, L.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Joannopoulos, J.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Jung, J.-Y.

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Kim, D. R.

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

Kim, Y. S.

Kimerling, L. C.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Krc, J.

A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
[CrossRef]

Kupec, J.

J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012).
[CrossRef]

J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009).
[CrossRef] [PubMed]

Lee, C. H.

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

Lee, J.-H.

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Lieber, C. M.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Lim, S. K.

Lin, C.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Liu, J.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

McPhedran, R. C.

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Paetzold, U. W.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Park, K.-T.

Pattnaik, S.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

Peters, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Pieters, B. E.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Pillai, S.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
[CrossRef]

Polman, A.

Poruba, A.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Poulton, C. G.

Povinelli, M. L.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Rau, U.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Rech, B.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Rüdiger, M.

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Senz, S.

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Shimizu, T.

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Slafer, W. D.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

Soderstrom, T.

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Springer, J.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Sturmberg, B. C. P.

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Terrazzoni-Daudrix, V.

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

Topic, M.

A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Um, H.-D.

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Vanecek, M.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

von Plessen, G.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Weisse, J. M.

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

Witzigmann, B.

J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012).
[CrossRef]

J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express17(12), 10399–10410 (2009).
[CrossRef] [PubMed]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

Yang, J. M.

Yang, P.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yi, Y.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Zeng, L.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

Zhang, Z.

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Zheng, X.

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

Zhou, D.

R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst,” Adv. Mater. (Deerfield Beach Fla.)21, 4701–4705 (2009).

Appl. Phys. Lett. (3)

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93(22), 221105 (2008).
[CrossRef]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett.99(13), 131114 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

A. Campa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004).
[CrossRef]

F. J. Haug, T. Soderstrom, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys.104(6), 064509 (2008).
[CrossRef]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

J. Comput. Electron. (1)

J. Kupec and B. Witzigmann, “Computational electromagnetics for nanowire solar cells,” J. Comput. Electron.11(2), 153–165 (2012).
[CrossRef]

Nano Lett. (7)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored Vertical Silicon Nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett.4(3), 433–436 (2004).
[CrossRef]

J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, “Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation,” Nano Lett.11(3), 1300–1305 (2011).
[CrossRef] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells,” Nano Lett.10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Nat. Photonics (1)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Opt. Express (5)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

R. Biswas and D. Zhou, “Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping,” Phys. Status Solidi., A Appl. Mater. Sci.207(3), 667–670 (2010).
[CrossRef]

Proc. SPIE (1)

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual schematics showing light trapping and optical losses in Ag BR for (a) a Si thin-film solar cell and (b) a Si nanowire solar cell. (c) A three-layer structure consisting of a NW array, a thin nanohole-contact-grating layer, and a thick flat BR. (d, e) Top-view and cross-section of a unit cell. (f) Quarter-view of a unit cell and the location of the boundary conditions. The probe line ‘AB’ (denoted in red) is set along the center of a nanowire, and a probe area ‘C’ (blue) is set close to the bottom of the nanowire.

Fig. 2
Fig. 2

(a) Absorptance spectra of SiNW arrays without Ag BR. (b) Absorptance spectra of SiNW arrays integrated with a flat Ag BR. (c) Optical properties of SiNW arrays that have a lattice constant of 100 nm and a wire diameter of 60 nm. The blue and black lines correspond to light absorption by Si with and without Ag BR, respectively. The solid red line corresponds to the absorption loss by the Ag BR with the same geometry, and the green line shows the reflectance. The dashed red line shows the absorption loss at the Ag/air interface calculated by Fresnel equations. (d) The line plots show the light intensities along the probe line ‘AB’ at four typical wavelengths labeled with (i-iv), as denoted in panel c. The insets show the two-dimensional electric field distribution as a function of different wavelengths for the probe rectangle ‘C’ depicted in Fig. 1(f).

Fig. 3
Fig. 3

(a) Light absorptances of SiNW arrays (with a lattice constant of 500 nm and diameter of 300 nm) are compared to the absorptance (loss) by a Ag BR, where the blue and black lines correspond to the light absorption by Si with and without the Ag BR, respectively. The red line shows the absorption loss by the Ag BR. (b) The electric field distributions along the probe line ‘AB’ inside the SiNW are compared for the three wavelengths, (i) 833 nm, (ii) 983 nm, and (iii) 1000 nm. The insets show the corresponding two-dimensional plots of electric field for the probe rectangle ‘C’.

Fig. 4
Fig. 4

(a) The ultimate efficiencies calculated using three different geometrical parameters are shown as a function of the embedded depth of Ag nanoholes. For reference, each dashed line (color-matched) denotes the ultimate efficiency value of bare SiNW arrays without a Ag BR. (b) Optical losses by the Ag BR are also shown for comparison.

Fig. 5
Fig. 5

(a-c) Optical loss spectra for three different geometrical conditions of SiNW arrays as a function of embedded depth of Ag nanoholes. (d-f) Absorption enhancement (AE) in SiNWs with different embedded depths of nanoholes where the AE in the SiNWs integrated with a flat BR (p = 0, dark blue lines) was set to 1 for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A Si, Ag ( λ )= Q Si, Ag ( λ,x,y,z )dV E in
Q Si, Ag ( λ,x,y,z )= 1 2 ε Si, Ag '' ( λ ) | E( x,y,z ) | 2
η UE = 310nm λ g I( λ ) A Si ( λ ) λ λ g dλ 310nm 4000nm I( λ )dλ
η Loss = 310nm λ g I( λ ) A Ag ( λ )dλ 310nm 4000nm I( λ )dλ

Metrics