Abstract

We perform a systematic analysis of enhanced short-circuit current density (Jsc) in organic solar cells (OSCs) where one metallic electrode is optically thick and the other consists of a two-dimensional metallic crossed grating. By examining a model device representative of such surface plasmon (SP)-enhanced OSCs by the Fourier modal and finite-element methods for electromagnetic and exciton diffusion calculations, respectively, we provide general guidelines to maximize Jsc of the SP-enhanced OSCs. Based on this study, we optimize the performance of a small-molecule OSC employing a copper phthalocyanine–fullerene donor–acceptor pair, demonstrating that the optimized SP-enhanced device has Jsc that is 75 % larger than that of the optimized device with an ITO-based conventional structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428, 911–918 (2004).
    [CrossRef] [PubMed]
  2. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
    [CrossRef] [PubMed]
  3. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
    [CrossRef]
  4. M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, 1999).
  5. I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
    [CrossRef]
  6. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
    [CrossRef]
  7. S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
    [CrossRef]
  8. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
    [CrossRef]
  9. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS. Bull.30, 28–32 (2005).
    [CrossRef]
  10. C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express16, 19987–19994 (2008).
    [CrossRef] [PubMed]
  11. J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
    [CrossRef]
  12. H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
    [CrossRef] [PubMed]
  13. C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).
  14. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
    [CrossRef]
  15. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18, A620–A630 (2010).
    [CrossRef] [PubMed]
  16. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
    [CrossRef]
  17. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19, A1202–A1210 (2011).
    [CrossRef] [PubMed]
  18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
    [CrossRef]
  19. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
    [CrossRef]
  20. D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
    [CrossRef]
  21. J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
    [CrossRef] [PubMed]
  22. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
    [CrossRef]
  23. A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons Inc, 1967).
  24. E. D. Palik, Handbook of optical constants of solids, 1st ed. (Academic Press, 1997).
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3, 1780–1787 (1986).
    [CrossRef]
  26. H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).
  27. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A.14, 2758–2767 (1997).
    [CrossRef]
  28. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12, 1077–1086 (1995).
    [CrossRef]
  29. C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004).
    [CrossRef]
  30. COMSOL Multiphysics®, http://www.comsol.com .
  31. L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
    [CrossRef]
  32. M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
    [CrossRef]
  33. J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
    [CrossRef]
  34. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
    [CrossRef] [PubMed]
  35. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
    [CrossRef]
  36. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express20, 12213–12221 (2012).
    [CrossRef] [PubMed]
  37. P. Zilio, D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, “Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings,” Opt. Express20, A476–A488 (2012).
    [CrossRef] [PubMed]
  38. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982).
    [CrossRef]
  39. S. B. Mallick, M. Agrawal, and P. Peumans, “Optical light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010).
    [CrossRef] [PubMed]
  40. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett.8(9), 491–493 (1983).
    [CrossRef] [PubMed]
  41. M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
    [CrossRef]
  42. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
    [CrossRef]
  43. C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
    [CrossRef]
  44. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
    [CrossRef] [PubMed]

2012 (6)

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
[CrossRef]

M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
[CrossRef]

P. Zilio, D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, “Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings,” Opt. Express20, A476–A488 (2012).
[CrossRef] [PubMed]

Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express20, 12213–12221 (2012).
[CrossRef] [PubMed]

2011 (3)

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19, A1202–A1210 (2011).
[CrossRef] [PubMed]

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

2010 (7)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optical light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010).
[CrossRef] [PubMed]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18, A620–A630 (2010).
[CrossRef] [PubMed]

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

2009 (3)

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

2008 (5)

C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
[CrossRef]

C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express16, 19987–19994 (2008).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

2006 (1)

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

2005 (1)

S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS. Bull.30, 28–32 (2005).
[CrossRef]

2004 (3)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428, 911–918 (2004).
[CrossRef] [PubMed]

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004).
[CrossRef]

2003 (1)

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
[CrossRef]

2002 (2)

L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
[CrossRef]

C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
[CrossRef]

2000 (1)

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
[CrossRef]

1997 (1)

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A.14, 2758–2767 (1997).
[CrossRef]

1995 (1)

1986 (1)

1983 (1)

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982).
[CrossRef]

Agrawal, M.

Bai, W.

Bartoli, F.

Brabec, C. J.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Cao, Y.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Chan, M. Y.

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

Chaudhary, S.

Chen, C.-C.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Chen, H.-Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Chen, L.

Chen, Y.-H.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Chiu, S.-W.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Choy, W. C. H.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982).
[CrossRef]

Cook, S.

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

Deckman, H. W.

Dennler, G.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Duan, C.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Duhring, M. B.

M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
[CrossRef]

Eckert, R. D.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

Forberich, K.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Forrest, S.

C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
[CrossRef]

Forrest, S. R.

S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS. Bull.30, 28–32 (2005).
[CrossRef]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428, 911–918 (2004).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
[CrossRef]

Fung, D. D. S.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Furno, M.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

Furube, A.

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

Gan, Q.

Gaudiana, R. A.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Gaylord, T. K.

Ghosh, S.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
[CrossRef]

Gigli, G.

Gowrisanker, S.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

Grann, E. B.

Grove, A. S.

A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons Inc, 1967).

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

Halls, J. J. M.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

Han, L.

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

Heeger, A. J.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Hill, I.

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

Ho, K.-M.

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Hong, Z.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Hou, J.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Hsu, W.-C.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Huang, F.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Hung, Z.-Y.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Inganas, O.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
[CrossRef]

Jeon, J. H.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Jia, S.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

Kafafi, Z.

Kahn, A.

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

Katoh, R.

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

Kim, C.

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express16, 19987–19994 (2008).
[CrossRef] [PubMed]

C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).

C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
[CrossRef]

Kim, H.

H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).

Kim, J.

C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express16, 19987–19994 (2008).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

Kim, J. K.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Kim, J.-J.

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

Kim, M.-S.

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

Kim, S.-Y.

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

Kuang, P.

Lai, S. L.

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

Laird, D.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

Lau, K. M.

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

Lee, B.

H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).

Lee, C. S.

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

Lee, J.

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).

Lee, M. R.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Lee, S. T.

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

Leo, K.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
[CrossRef]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

Li, L.

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004).
[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A.14, 2758–2767 (1997).
[CrossRef]

Liang, Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Lin, F.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Lin, H.-W.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Lin, L.-Y.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

Maes, B.

Mallick, S. B.

Mazzeo, M.

Meiss, J.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

Moharam, M. G.

Mortensen, N. A.

M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, 1st ed. (Academic Press, 1997).

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

Park, J.

H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).

Park, J. H.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Park, K. H.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Park, O. O.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Pascal, R. A.

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optical light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010).
[CrossRef] [PubMed]

C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
[CrossRef]

Pfuetzner, S.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

Pommet, D. A.

Pope, M.

M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, 1999).

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Riede, M.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
[CrossRef]

Romanato, F.

Roxlo, C. B.

Ruseckas, A.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
[CrossRef]

Sammito, D.

Samuel, I. D. W.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
[CrossRef]

Seifter, J.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Seo, J. H.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Sha, W. E. I.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Shaw, P. E.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
[CrossRef]

Shen, H.

Shtein, M.

C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
[CrossRef]

Sigmund, O.

M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
[CrossRef]

Song, G.

Soos, Z. G.

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

Swenberg, C. E.

M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, 1999).

Tan, H.-R.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

Wang, C. C. D.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Wang, D. H.

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Williams, S. P.

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

Wong, K.-T.

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

Wu, Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Xie, F.-X.

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

Xu, T.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

Yablonovitch, E.

H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett.8(9), 491–493 (1983).
[CrossRef] [PubMed]

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982).
[CrossRef]

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
[CrossRef]

Yang, G.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Yang, J.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Yang, Y.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
[CrossRef]

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Ye, Z.

You, J.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Yu, L.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Zacco, G.

Zhang, S.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

Zhang, X. W.

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Zhou, C.

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004).
[CrossRef]

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
[CrossRef]

Zilio, P.

ACS Nano (1)

J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011).
[CrossRef] [PubMed]

Adv. Energy Mater. (1)

D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011).
[CrossRef]

Adv. Mater. (5)

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008).
[CrossRef]

H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012).
[CrossRef] [PubMed]

C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010).
[CrossRef] [PubMed]

M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008).
[CrossRef]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012).
[CrossRef]

C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002).
[CrossRef]

M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006).
[CrossRef]

J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010).
[CrossRef]

Chem. Phys. Lett. (2)

I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000).
[CrossRef]

S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009).
[CrossRef]

IEEE Trans. Electron. Devices (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982).
[CrossRef]

J. Appl. Phys. (4)

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003).
[CrossRef]

J. Mater. Chem. (1)

C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012).
[CrossRef]

J. Opt. A-Pure Appl. Op. (1)

C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A. (1)

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A.14, 2758–2767 (1997).
[CrossRef]

MRS. Bull. (1)

S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS. Bull.30, 28–32 (2005).
[CrossRef]

Nat. Photonics (2)

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009).
[CrossRef]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012).
[CrossRef]

Nature (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428, 911–918 (2004).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Org. Electron. (1)

L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002).
[CrossRef]

Proceedings of NSTI-Nanotech 2008 (1)

C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).

Science (1)

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009).
[CrossRef] [PubMed]

Other (5)

M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, 1999).

A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons Inc, 1967).

E. D. Palik, Handbook of optical constants of solids, 1st ed. (Academic Press, 1997).

H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).

COMSOL Multiphysics®, http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a model device representative of a surface plasmon-enhanced OSC. The two-dimensional Ag grating electrode has a square lattice with a period of ΛG, whose unit cell is drawn in red-dotted lines. The grating linewidth is 0.25ΛG. The orientation of the Cartesian coordinates is shown, with O on the grating surface denoting the origin. Also shown are the directions of the wave vector (k) and electric field (E) of an incident plane wave.

Fig. 2
Fig. 2

(a) Calculated absorption efficiency (ηabs) of the model device with torg = 70 nm, tu = 30 nm, ta = 10 nm, and tl = 30 nm, as a function of the grating period (ΛG) and the wavelength (λ) of the incident light. The maximum of ηabs is 0.71. (b) The z-component of the electric field corresponding to point ‘a’ (λ = 680 nm, ΛG = 380 nm) in (a). (c) The electric field intensity (|E|2 = E · E*) corresponding to point ‘a’. (d) The z-component of the electric field corresponding to point ‘b’ (λ = 760 nm, ΛG = 320 nm). (e) The electric field intensity corresponding to point ‘b’. E0 denotes the amplitude of the incident electric field. In (b) to (e), solid lines represent materials boundaries, and grating boundaries that do not lie on the planes shown are drawn as dotted lines.

Fig. 3
Fig. 3

(a) Calculated absorption efficiency (ηabs) of the model device with torg = 50 nm, tu = 10 nm, ta = 10 nm, and tl = 30 nm, as a function of the grating period (ΛG) and the wavelength (λ) of the incident light. The maximum of ηabs is 0.76. (b) The z-component of the electric field corresponding to point ‘a’ (λ = 660 nm, ΛG = 380 nm) in (a). (c) The electric field intensity (|E|2 = E · E*) corresponding to point ‘a’. (d) The z-component of the electric field corresponding to point ‘b’ (λ = 760 nm, ΛG = 320 nm). (e) The electric field intensity corresponding to point ‘b’.

Fig. 4
Fig. 4

(a) Internal quantum efficiency (ηint) of the model device with torg = 50 nm, tu = 10 nm, and ΛG = 320 nm versus γta/Ld, calculated for different values of Ld and λ. The black solid line shows ηint calculated using Eq. (6). (b) Steady-state exciton density profile (nexc) in the active layer when ta = 3.5 nm, Ld = 5 nm, and λ = 760 nm. The top (z = 30 nm) and bottom (z = 33.5 nm) faces correspond to the UTL– and LTL–active layer interfaces, respectively, where at the former (or latter) interface the exciton dissociation velocity is zero (or infinite).

Fig. 5
Fig. 5

(a) (Top) Absorption coefficient (α) of CuPc (red) and C60 (blue). (Bottom) Absorption efficiency (ηabs), as a function of the grating period (ΛG) and the wavelength (λ), of the active layer in the organic solar cell based on the CuPc and C60 DA heterojunction. The maximum of ηabs is 0.74. (b) The z-component of the electric field corresponding to point ‘a’ (λ = 600 nm, ΛG = 320 nm) in (a). (c) The z-component of the electric field corresponding to point ‘b’ (λ = 620 nm, ΛG = 200 nm).

Fig. 6
Fig. 6

(a) Short-circuit current density (Jsc) (red), solar-spectrum-weighted absorption efficiency (〈ηabs〉) (blue), and internal quantum efficiency (ηint) (black) versus γ = tCuPc/LCuPc = tC60/LC60 of the surface plasmon (SP)-enhanced CuPc–C60 solar cell with torg = 50 nm, and tu = 5 nm. (b) External quantum efficiency (ηext) of the optimized SP-enhanced device (red, γ = 1.0), compared with that of the optimized ITO-based device (black) consisting of: glass / 150 nm ITO / 5 nm PEDOT:PSS / 13 nm CuPc / 21 nm C60 / 29 nm BPhen / 100 nm Ag.

Fig. 7
Fig. 7

(a) Schematic diagram showing the orientation and polarization of an incident plane wave. An s-polarized (or p-polarized) plane wave whose electric field is drawn as a red (or blue) arrow has the electric (or magnetic) field vector perpendicular to the plane of incidence drawn as green dotted lines. (b) Schematic of a device considered to calculate the ergodic limit shown in (c), where an active layer is sandwiched between a perfect back reflector and an ideal front Lambertian surface with an ideal anti-reflection coating. (c) Short-circuit current density (Jsc) of the optimized SP-enhanced device in Sec. 4 versus incident polar angle (θ) for three azimuthal angles, ϕ = 0° (red), 22.5° (blue), and 45° (green). For comparison, Jsc of the optimized ITO-based device in Sec. 4 (brown) and the device shown in (b) (Ergodic limit, black open squares) are also shown. ‘+’ and ‘×’ symbols refer to s- and p-polarizations, respectively. The three black lines are J sc max cos θ, where J sc max is Jsc(θ = 0°) for each device.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

J sc = q η ext ( λ ) S ( λ ) d λ ,
η int = 𝒜 J sc ( r , λ ) / q d 2 r 𝒱 G exc ( r , λ ) d 3 r ,
L d 2 τ 2 n exc n exc τ + G exc = 0 ,
J sc = q L d 2 τ | e n n exc ( r , λ ) | ,
η abs = 𝒱 G exc ( r , λ ) d 3 r 𝒜 I 0 ( r , λ ) d 2 r = 𝒱 Re { n ˜ ( λ ) } α ( λ ) E ( r , λ ) E * ( r , λ ) d 3 r n 0 | E 0 | 2 𝒜 ,
η int L d t tanh t L d ,
J sc q η int η abs ( λ ) S ( λ ) d λ .
η abs = η abs ( λ ) S ( λ ) d λ S ( λ ) d λ ,
J sc q η int η abs S ( λ ) d λ ,
Re ( n ˜ eff ) = Re ( n ˜ CuPc ) t CuPc + Re ( n ˜ C 60 ) t C 60 t a and
α eff = α CuPc t CuPc + α C 60 t C 60 t a .
η abs = 1 e 4 α eff t a 1 e 4 α eff t a + e 4 α eff t a ( Re ( n ˜ eff ) ) 2 .

Metrics