Abstract

Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO2, which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).
  2. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).
  3. D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).
  4. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011).
  5. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).
  6. S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express18(S4), A528–A535 (2010).
  7. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
  8. G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).
  9. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).
  10. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).
  11. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
  13. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
  14. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
  15. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).
  16. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
  17. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).
  18. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).
  19. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011).
  20. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).
  21. L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).
  22. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).
  23. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).
  24. J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).
  25. M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).
  26. J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).
  27. G. A. Evans, (Southern Methodist University, Dallas, 1998).
  28. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, Singapore, 1988).
  29. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).
  30. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 86th ed. (CRC Press, London: Taylor and Francis, 2004).
  31. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).
  32. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).
  33. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
  34. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).
  35. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  36. R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

2012 (5)

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

2011 (12)

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011).

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011).

2010 (7)

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).

S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express18(S4), A528–A535 (2010).

2009 (3)

R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).

2008 (2)

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

2007 (1)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

2006 (1)

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Abass, A.

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

Angmo, D.

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Aoki, N.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

Aryal, M.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).

Baba, A.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

Baek, N. S.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

Bailly, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Ballarotto, M.

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Beaupre, S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Bienstman, P.

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

Blom, P. W. M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Butler, J. K.

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).

Cao, Y.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Chen, F.-C.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Chen, L.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Chen, L.-M.

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

Chen, P.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Chew, W. C.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).

Chien, F.-C.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Cho, S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Choy, W. C. H.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

Coates, N.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

de Bettignies, R.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

de Boer, B.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Defranoux, C.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Demir, H. V.

Dynich, R.

R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

Escoubas, L.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Evans, G. A.

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

Filippov, V.

R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

Flory, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Fung, D. D. S.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

Gadisa, A.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Green, M. A.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011).

Guillerez, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Hammer, J. M.

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

Hau, S. K.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

He, Z.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Herman, W. N.

Hong, Z.

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

Hsiao, Y.-S.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Hsu, C.-S.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Huang, M. H.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Huang, X.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Hummelen, J. C.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Jen, A. K. Y.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

Jørgensen, M.

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Kan, H.-C.

Kaneko, F.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Kato, K.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Ko, D.-H.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Krebs, F. C.

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Kroon, R.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Kuo, C.-H.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Kymakis, E.

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

Leclerc, M.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).

Lee, K.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Lenes, M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Leo, K.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

Li, X. H.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

Liu, Y.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Liu, Y. G.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

Lopez, R.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Maes, B.

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

Manceau, M.

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Meiss, J.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

Monestier, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Moon, J. S.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Moses, D.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).

Okyay, A. K.

O'Malley, K.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

Ozgur, G.

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Park, S. H.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).

Phaneuf, R. J.

Pillai, S.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).

Ponyavina, A.

R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Riede, M. K.

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).

Romero, D. B.

Roy, A.

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Sefunc, M. A.

Sha, W. E. I.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

Shen, H.

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

Shinbo, K.

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

Simon, J.-J.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Spyropoulos, G. D.

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

Stratakis, E.

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

Stylianakis, M. M.

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

Su, S.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Tang, W.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Torchio, P.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

Tsai, S.-J.

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

Wang, J.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Wang, Y.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Wong, W.-Y.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Wu, H.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Wu, J.-L.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Xie, F. X.

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

Xu, T.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Xu, X.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Xu, Z.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

Yang, Y.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

Yip, H.-L.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

Zhang, F.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Zhang, J.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Zhong, C.

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).

Zhuo, Z.

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Zou, J.

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

ACS Appl. Mater. Interfaces (1)

A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).

ACS Nano (1)

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).

Adv. Mater. (Deerfield Beach Fla.) (2)

Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).

Appl. Phys. Lett. (5)

G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).

S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).

J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).

J. Appl. Phys. (2)

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).

J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).

J. Appl. Spectrosc. (1)

R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

J. Mater. Chem. (2)

L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).

D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).

J. Phys. Chem. C (1)

X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).

Nano Lett. (3)

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).

Nat. Photonics (3)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).

S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).

Opt. Express (3)

Opt. Lett. (1)

Org. Electron. (1)

M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).

Pol. Rev. (1)

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).

Prog. Photovolt. Res. Appl. (1)

M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011).

Sol. Energy Mater. Sol. Cells (2)

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).

F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).

Other (4)

D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 86th ed. (CRC Press, London: Taylor and Francis, 2004).

G. A. Evans, (Southern Methodist University, Dallas, 1998).

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, Singapore, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A three dimensional schematic and a cross-sectional image of the inverted polymer solar cell.

Fig. 2
Fig. 2

(a) Number of absorbed photons in the active layers with varying TiO2 thickness. Open square denotes the case without an spacer layer. (b) The absorption enhancements of the cells with varying TiO2 thickness. Absorption enhancement is the normalized number of absorbed photons in the cell with TiO2 with reference to the cell without TiO2.

Fig. 3
Fig. 3

(a) Dispersion curves of the TE0, the TM0 and the SPP modes for device structures Ag/P3HT:PCBM 150 nm/PEDOT:PSS 50 nm (black symbol), and Ag/TiO2 50 nm/P3HT:PCBM 150 nm/PEDOT:PSS 50 nm (red symbol) as a function of a propagation wave vector(kx). The solid lines are the dispersion curves of the SPP modes for the semi-infinite bilayers (blue line: Ag/P3HT:PCBM, red line: Ag/TiO2), and the red dashed line is the vacuum light line. (b) Dispersion curves as a function of the nanograting period with the same legend as Fig. 3(a). (c) Normalized optical field intensity profiles of the TE0, the TM0, and the SPP modes for the case without TiO2 at the wavelength of 650 nm. (d) Normalized optical field intensity profiles of the TE0, the TM0, and the SPP modes for the case with TiO2 at the wavelength of 650 nm.

Fig. 4
Fig. 4

(a) Absorption spectra of the active layers in a TE polarization of incident light as a function of the period for the cell with nanograting of a 50 nm height and a 150 nm width. The white dashed and the dash-dotted lines denote the simulated dispersion curves for the cells with and without TiO2, respectively. (b) The normalized E-field intensity distributions at position 1 (nanograting period: 400nm, wavelength: 650 nm). (c) The normalized E-field intensity distributions at position 2 (nanograting period: 400 nm, wavelength: 678 nm).

Fig. 5
Fig. 5

(a) Absorption spectra of the active layers in a TM polarization of incident light as a function of period for the cell with nanograting of a 50 nm height and a 150 nm width. The white dashed and the dash-dotted lines denote the simulated dispersion curves of the SPP and the TM0 modes for the cells without and with TiO2, respectively. (b) The normalized H-field intensity distributions at position 1 (nanograting period: 350nm, wavelength: 701 nm). (c) The normalized H-field intensity distributions at position 2 (nanograting period: 500 nm, wavelength: 664 nm). (d) The normalized H-field intensity distributions at position 3 (nanograting period: 350 nm, wavelength: 636 nm).

Fig. 6
Fig. 6

The number of absorbed photons as a function of nanograting period for the cell with a 50 nm height and a 150 nm width in TE, TM, and random polarizations.

Fig. 7
Fig. 7

(a) absorption enhancements with varying a height and a width of nanograting in (a) TE, (b) TM and (c) random polarizations for the cells with a nanograting period of 380 nm.

Fig. 8
Fig. 8

Absorption spectra of 100 nm thick active layers as a function of the nanograting period in (a) TE and (b) TM polarizations. Absorption spectra of 75 nm thick active layers as a function of the nanograting period in (c) TE and (d) TM polarizations. The dashed and dash-dotted lines are the dispersion curves of the TE0 modes for the case with and without TiO2 in (a), (c). The dashed line is the dispersion curve of the SPP mode for the case without TiO2 in (b), (d).

Fig. 9
Fig. 9

(a) Absorption spectra of 150 nm thick active layers for the case without nanograting and the case with nanograting in TE and TM polarizations. (b) The number of absorbed photons in TE, TM, and random polarizations, and absorption enhancements as a function of an active layer thickness. The red dashed line denotes 20% of the absorption enhancement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P=ω× ε × V | E | 2 dV
k x = 2π λ ( ε m ε d ε m + ε d )
k x =n 2π p

Metrics