Abstract

LaOBr:Nd3+/Yb3+ has been prepared via a high temperature solid-state method, and near-infrared (NIR) quantum cutting (QC) luminescence in this system has been demonstrated. NIR luminescence of LaOBr:Nd3+/Yb3+ has been investigated by excitation, emission spectra and lifetime measurements, respectively. After absorption of a single 363 nm photon, downconversion (DC) occurs from the Nd3+ 4G9/2 level via the cross-relaxation process Nd3+ (4G9/24F3/2), Yb3+ (2F7/22F5/2), followed by a second energy transfer step from Nd3+ (4F3/2 level) to Yb3+ (2F5/2 level), leading to the emission of two IR photons from Yb3+, which is a promising avenue to boost the efficiency of solar cells with a twofold increase in the photon number.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009).
    [CrossRef]
  2. A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annu. Rev. Phys. Chem.52(1), 193–231 (2001).
    [CrossRef] [PubMed]
  3. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
    [CrossRef] [PubMed]
  4. K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011).
    [CrossRef] [PubMed]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  6. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  7. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
    [CrossRef]
  8. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010).
    [CrossRef]
  9. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
    [CrossRef]
  10. J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
    [CrossRef]
  11. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
    [CrossRef]
  12. J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
    [CrossRef]
  13. X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
    [CrossRef]
  14. S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
    [CrossRef]
  15. H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
    [CrossRef]
  16. X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
    [CrossRef] [PubMed]
  17. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]
  18. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
    [CrossRef]
  19. Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
    [CrossRef]

2012 (1)

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

2011 (1)

2010 (5)

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010).
[CrossRef]

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

2009 (5)

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009).
[CrossRef]

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

2008 (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

2007 (3)

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

2001 (1)

A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annu. Rev. Phys. Chem.52(1), 193–231 (2001).
[CrossRef] [PubMed]

Aarts, L.

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Arcangeli, A.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Bonellin, L.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Brown, G. F.

G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009).
[CrossRef]

Byeon, S. H.

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Chen, D.

Chen, X. P.

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Chen, Y. H.

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

de Wild, J.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Deng, K. M.

Dong, C. M.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Dong, G.

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Gong, T.

Guo, H.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Hu, L. X.

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Ji, X. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Jia, Z. T.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Jiang, M. H.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Joh, C. H.

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Lee, S. S.

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Liu, X.

Liu, X. Y.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Meijer, J. M.

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Meijerink, A.

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Nozik, A. J.

A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annu. Rev. Phys. Chem.52(1), 193–231 (2001).
[CrossRef] [PubMed]

Park, H. I.

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Qiao, Y.

Qiu, J.

Qiu, J. R.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

Rath, J. K.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

Schropp, R. E. I.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Tao, X. T.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Teng, Y.

Tonelli, M.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Van der Ende, B. M.

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Van Sark, W. G. J. H. M.

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Wei, X. T.

Wu, J. Q.

G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009).
[CrossRef]

Xie, J.

Yang, C. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Ye, S.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Yin, M.

Zhang, H.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Zhang, J.

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

Zhang, L. H.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010).
[CrossRef]

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Zhang, Y. F.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Zhao, F. Y.

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Zhou, J.

Zhou, J. J.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

Zhuang, Y.

Zhuang, Y. X.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots,” Annu. Rev. Phys. Chem.52(1), 193–231 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, “Cooperative quantum cutting in one-dimensional (YbxGd1-x) Al3(BO3)4:Tb nanorods,” Appl. Phys. Lett.90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4–6), 116–118 (2010).
[CrossRef]

J. Appl. Phys. (2)

X. P. Chen, X. Y. Huang, and Q. Y. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009).
[CrossRef]

Z. T. Jia, A. Arcangeli, X. T. Tao, J. Zhang, C. M. Dong, M. H. Jiang, L. Bonellin, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys.105, 083113 (2009).
[CrossRef]

J. Solid State Chem. (1)

S. S. Lee, H. I. Park, C. H. Joh, and S. H. Byeon, “Morphology-dependent photoluminescence property of red-emitting LnOCl:Eu (Ln=La and Gd),” J. Solid State Chem.180(12), 3529–3534 (2007).
[CrossRef]

Laser Photonics Rev. (1)

G. F. Brown and J. Q. Wu, “Third generation photovoltaics,” Laser Photonics Rev.3(4), 394–405 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, “Efficient visible to near-infrared energy transfer in Ce3+–Yb3+ co-doped Y2SiO5 phosphors,” Opt. Mater.34(7), 1034–1036 (2012).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. Van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Prog. Mater. Sci. R (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. R55(5), 353–427 (2010).
[CrossRef]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells94(11), 1919–1922 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD pattern of as-prepared LaOBr:5%Nd3+,5%Yb3+ and JCPDS Card (No. 88-0070) of LaOBr, and the inset shows the SEM image of LaOBr:5%Nd3+,5%Yb3+.

Fig. 2
Fig. 2

PLE spectrum of the Nd3+:4F2/3-4I11/2 emission (1082 nm) and NIR PL spectrum under excitation of 363 nm (Nd3+:4I9/2-4D1/2) in LaOBr:5%Nd3+, and the inset shows the tendency of the Nd3+ emission intensities (1082 nm) as a function of te Nd3+ doping concentrations in LaOBr:xNd3+.

Fig. 3
Fig. 3

Left side: PLE spectra of Nd3+:4F2/3-4I11/2 emission (1082 nm) and the Yb3+:2F2/5-2F2/7 emission (1020 nm) in LaOBr:5%Nd3+,5%Yb3+. Right side: The dependence of the NIR PL spectra upon excitation of 363 nm (Nd3+:4I9/2-4D1/2) on Yb3+ doping concentrations in LaOBr:5%Nd3+,xYb3+.

Fig. 4
Fig. 4

(a) The dependence of the NIR emission intensities at 1020 nm (Yb3+:2F2/5-2F2/7) and 1082 nm (Nd3+:4F2/3-4I11/2) on the doping concentrations. (b) Lifetime and ETE as a function of the Yb3+ doping concentrations in LaOBr:5%Nd3+,xYb3+.

Fig. 5
Fig. 5

Decay curves of the Nd3+:4F2/3-4I11/2 (1082 nm) under excitation of 363 nm with different Yb3+ concentration (x) in LaOBr:5%Nd3+,xYb3..

Fig. 6
Fig. 6

Schematic energy-level diagram of the CR (1) and ET (2) processes for near-infrared emission of the Nd3+, Yb3+ couple in LaOBr:Nd3+,Yb3+ under excitation of UV light (λex = 363 nm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ= tI(t)dt I(t)dt
η ETE = η x%Yb =1 I x%Yb dt I 0%Yb dt
η QE = η Nd (1 η x%Yb )+2 η x%Yb

Metrics