Abstract

Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films

Xuehong Li, Yang Zhang, and Xijun Ren
Opt. Express 17(11) 8735-8740 (2009)

Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays

Yu Fei Chan, Wei Su, Chang Xing Zhang, Zheng Long Wu, Ying Tang, Xiao Qi Sun, and Hai Jun Xu
Opt. Express 20(22) 24280-24287 (2012)

Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy

Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-His Chen, and Raymond Chien-Chao Tsiang
Opt. Mater. Express 3(2) 237-247 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
    [Crossref] [PubMed]
  4. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  5. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  6. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
    [Crossref] [PubMed]
  7. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  8. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
    [Crossref] [PubMed]
  9. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
    [Crossref]
  10. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  11. J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
    [Crossref] [PubMed]
  12. Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
    [Crossref] [PubMed]
  13. O. Akhavan, “Graphene nanomesh by ZnO nanorod photocatalysts,” ACS Nano 4(7), 4174–4180 (2010).
    [Crossref] [PubMed]
  14. Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
    [Crossref]
  15. Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
    [Crossref]
  16. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
    [Crossref] [PubMed]
  17. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
    [Crossref] [PubMed]
  18. S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
    [Crossref]
  19. E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
    [Crossref] [PubMed]
  20. D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
    [Crossref]
  21. S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
    [Crossref]
  22. S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
    [Crossref]
  23. S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
    [Crossref] [PubMed]
  24. D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
    [Crossref]
  25. H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(Part 1, No. 2), 550–553 (1998).
    [Crossref]
  26. H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
    [Crossref] [PubMed]
  27. Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
    [Crossref] [PubMed]
  28. J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
    [Crossref]
  29. S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).
  30. Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
    [Crossref] [PubMed]
  31. F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
    [Crossref]
  32. G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
    [Crossref] [PubMed]
  33. T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn. 78(3), 034709 (2009).
    [Crossref]
  34. D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
    [Crossref] [PubMed]

2012 (2)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

2011 (4)

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

2010 (5)

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

O. Akhavan, “Graphene nanomesh by ZnO nanorod photocatalysts,” ACS Nano 4(7), 4174–4180 (2010).
[Crossref] [PubMed]

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

2009 (5)

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref] [PubMed]

T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn. 78(3), 034709 (2009).
[Crossref]

Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
[Crossref]

2008 (5)

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

2007 (3)

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

2006 (1)

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

2005 (2)

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2001 (4)

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[Crossref] [PubMed]

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[Crossref]

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

1998 (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(Part 1, No. 2), 550–553 (1998).
[Crossref]

1980 (1)

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

Ahn, K. J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Akhavan, O.

O. Akhavan, “Graphene nanomesh by ZnO nanorod photocatalysts,” ACS Nano 4(7), 4174–4180 (2010).
[Crossref] [PubMed]

Amans, D.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Ando, T.

T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn. 78(3), 034709 (2009).
[Crossref]

Angadi, B.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Aranovich, J. A.

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

Asahi, H.

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

Atalla, V.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, W. Z.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Belsky, A.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Blake, P.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Boebinger, G. S.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Booth, T. J.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Brimicombe, P. D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brus, L. E.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

Bube, R. H.

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Castro, E. V.

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

Choi, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Choi, W. K.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Collins, T. C.

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

Dai, L.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Dai, Y.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[Crossref] [PubMed]

Ding, Y.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dujardin, C.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Elias, D. C.

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

Fahrenbruch, A. L.

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

Fedorov, N.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gan, L.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Geim, A. K.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Gleeson, H. F.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Golmayo, D.

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guinea, F.

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

Guo, X. F.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Hadiyawarman, A.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Hasegawa, S.

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

He, H. P.

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Hill, E. W.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Hone, J.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hong, B. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Hong, J. I.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Hong, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Huang, J. Y.

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Hwang, S. W.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Jiang, D.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, Z.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Jing, X. Y.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Jogai, B.

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

Kamat, P. V.

G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref] [PubMed]

F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
[Crossref]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, C. O.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, G.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, K. S.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

Kim, M.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Kim, M. C.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, P.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Kim, S.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Kim, Y. J.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
[Crossref]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Klamroth, T.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Knorr, A.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Koshino, M.

T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn. 78(3), 034709 (2009).
[Crossref]

Kwon, B. W.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Kysar, J. W.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Ledoux, G.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Lee, C.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C.-L.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Lee, J. H.

Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
[Crossref]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Lim, K. Y.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Lin, J. A.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Lin, S. S.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Liu, C.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Look, D. C.

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[Crossref]

Maan, J. C.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Malic, E.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Martin, P.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Masenelli, B.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Mélinon, P.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Meng, H.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Miao, F.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Mishchenko, A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nair, R. R.

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Nishida, S.

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

Novoselov, K. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ochoa, H.

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

Ozkan, C. S.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Ozkan, M.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Pan, Z. W.

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[Crossref] [PubMed]

Park, D. H.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Paul, R. K.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Penchev, M.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Qin, G. G.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Reich, S.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Reynolds, D. C.

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

Richter, M.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Ryu, S.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

Saalfrank, P.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Seger, B.

F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
[Crossref]

Seo, W.-S.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Shi, Z. J.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Shibata, H.

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(Part 1, No. 2), 550–553 (1998).
[Crossref]

Shin, D. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Sim, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Snyder, R. L.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Son, D. I.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Song, J. H.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Stormer, H. L.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Tainoff, D.

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Tang, H. P.

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Vietmeyer, F.

F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
[Crossref]

Wang, G. P.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Wang, J. R.

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Wang, Y. J.

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Wang, Z. L.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[Crossref] [PubMed]

Weber, C.

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wei, F.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Wei, X. D.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wei, Y. G.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Williams, G.

G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref] [PubMed]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Xu, Z.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Yamashita, T.

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

Yan, H. Q.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P. D.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Ye, Z. Z.

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Yi, G. C.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
[Crossref]

Yi, Y. J.

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Yoon, A.

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Yu, B.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

Yu, Y. J.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

Zeitler, U.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Zeng, Y. J.

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Zhang, Y.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, B. H.

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Zhao, Y.

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

Zhong, J. B.

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Zhu, L. P.

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

Zhu, Y.

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

ACS Nano (1)

O. Akhavan, “Graphene nanomesh by ZnO nanorod photocatalysts,” ACS Nano 4(7), 4174–4180 (2010).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 19(19), 2935–2940 (2007).
[Crossref]

Appl. Phys. Lett. (2)

D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett. 79(23), 3794–3796 (2001).
[Crossref]

Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett. 95(21), 213101 (2009).
[Crossref]

J. Appl. Phys. (3)

S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys. 104(11), 114307 (2008).
[Crossref]

S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys. 104(6), 064311 (2008).
[Crossref]

J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys. 51(8), 4260–4269 (1980).
[Crossref]

J. Ceramic. Proc. Res. (1)

S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res. 6, 245–249 (2005).

J. Cryst. Growth (1)

S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth 306(2), 339–343 (2007).
[Crossref]

J. Mater. Chem. (1)

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21(32), 11760–11763 (2011).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn. 78(3), 034709 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(Part 1, No. 2), 550–553 (1998).
[Crossref]

Langmuir (1)

G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref] [PubMed]

Mater. Sci. Eng. B (1)

D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001).
[Crossref]

Nano Lett. (4)

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[Crossref] [PubMed]

Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett. 9(10), 3430–3434 (2009).
[Crossref] [PubMed]

S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett. 9(11), 3877–3882 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology 22(24), 245603 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Phys. Rev. B (1)

D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B 81(11), 115304 (2010).
[Crossref]

Phys. Rev. Lett. (3)

E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105(26), 266601 (2010).
[Crossref] [PubMed]

E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett. 106(9), 097401 (2011).
[Crossref] [PubMed]

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010).
[Crossref] [PubMed]

Science (7)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Small (1)

J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small 6(21), 2448–2452 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

ZnO NW-core/graphene-shell structure (a-c) Typical low-magnification TEM images show the ZnO NWs were covered with ultrathin graphene layers (d) a high-magnification image of the area as indicated by the arrow in (c) shows all of the ZnO NWs surfaces have been surrounded by graphene.

Fig. 2
Fig. 2

(a) PL spectrum of ZnO NWs-core/graphene-shell structure at 14K, which can be deconvoluted into three peaks. (b) Temperature-dependent near band-edge PL spectra of ZnO NWs-core/graphene-shell structure. Each spectrum is vertically separated for clarity.

Fig. 3
Fig. 3

Temperature-dependent PL spectra of pure ZnO NWs, the inset shows the near band-edge PL spectra of ZnO NWs at 16K.

Fig. 4
Fig. 4

(a) Temperature-dependent intensity of A, B, C peaks as a function of temperature, the red solid line is the fitting curve using Eq. (2). (b)Temperature dependent defect emission in ZnO-NW core/graphene-shell structure.

Fig. 5
Fig. 5

Schematic band energy diagram between graphene and ZnO NWs, where Ec, Ev, Ef, ED represents conduction band, valence band, Fermi level and donor level, respectively. The holes assemble on the surface of ZnO NWs due to the up-conversion of valence band, which limits the exciton emission in the ZnO NWs. The recombinations giving rise to A, B emissions can be described as below: The photo-excited electron in ZnO is thermally emitted into graphene part and then the electron recombines with holes accumulated at ZnO surfaces with energy level of A and B. The C emission is a donor-acceptor pair (DAP) recombination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( T ) = I ( 0 ) 1 + q = 1 w D q exp ( E ' q / k B T ) 1 + j = 1 m C j exp ( E j / k B T )
J = A * T 2 e q Φ B / k B T ( e q V / k B T 1 )

Metrics