Abstract

The correlated color temperature (CCT) tunable white-light LED cluster, which consists of direct-emission blue and red LEDs as well as phosphor-conversion (PC) LEDs packaged by combining green and orange phosphors with a blue LED die, has been obtained by nonlinear program for maximizing luminous efficacy (LE) of radiation (LER) under conditions of both color rendering index (CRI) and special CRI of R9 for strong red above 90 at CCTs of 2700 K to 6500 K. The optimal peak wavelengths of blue LED, red LED, blue LED die, green and orange phosphors are 465 nm, 628 nm, 452 nm, 530 nm and 586 nm, respectively. The real CCT tunable PC/red/blue LED cluster with CRIs of 90~96, R9s of 90~96, CQSs of 89~94, LERs of 303~358 lm/W, and LEs of 105~119 lm/W has been realized at CCTs of 2722 K to 6464 K. The deviation of the peak wavelength should be less than ± 5 nm for blue LED die, ± 1 nm for red LED, and ± 2 nm for blue LED to achieve the PC/R/B LED cluster with high optical performance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
    [CrossRef] [PubMed]
  2. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
    [CrossRef] [PubMed]
  3. D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
    [CrossRef] [PubMed]
  4. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  5. International Commission on Illumination, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l'Éclairage, Vienna, Austria, 1995).
  6. I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F, 63371F-12 (2006).
    [CrossRef]
  7. G. X. He and L. H. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49(24), 4670–4676 (2010).
    [CrossRef] [PubMed]
  8. G. X. He and L. H. Zheng, “White-light LED clusters with high color rendering,” Opt. Lett. 35(17), 2955–2957 (2010).
    [CrossRef] [PubMed]
  9. M. C. Chien and C. H. Tien, “Cluster LEDs mixing optimization by lens design techniques,” Opt. Express 19(S4Suppl 4), A804–A817 (2011).
    [CrossRef] [PubMed]
  10. M. C. Chien and C. H. Tien, “Multispectral mixing scheme for LED clusters with extended operational temperature window,” Opt. Express 20(S2Suppl 2), A245–A254 (2012).
    [CrossRef] [PubMed]
  11. N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
    [CrossRef]
  12. N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
    [CrossRef]
  13. CIE, “TC 1-62: Color Rendering of White LED Light Sources,” in CIE 177:2007 (CIE, Vienna, Austria, 2007).
  14. W. Davis and Y. Ohno, “Color qulity scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  15. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
    [CrossRef]
  16. S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
    [CrossRef]
  17. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
    [CrossRef]
  18. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
    [CrossRef]
  19. A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
    [CrossRef] [PubMed]
  20. G. X. He and H. F. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19(3), 2519–2529 (2011).
    [CrossRef] [PubMed]
  21. G. X. He, J. Xu, and H. F. Yan, “Spectral optimization of warm-white light-emitting diode lamp with both color rendering index (CRI) and special CRI of R9 above 90,” AIP Advances 1(3), 032160 (2011).
    [CrossRef]
  22. P. Zhong, G. X. He, and M. H. Zhang, “Optimal spectra of white light-emitting diodes using quantum dot nanophosphors,” Opt. Express 20(8), 9122–9134 (2012).
    [CrossRef] [PubMed]
  23. J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
    [CrossRef]
  24. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
    [CrossRef]
  25. I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15(6), 3607–3618 (2007).
    [CrossRef] [PubMed]
  26. H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
    [CrossRef]

2012 (2)

2011 (3)

2010 (4)

2008 (3)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

2007 (1)

2006 (2)

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F, 63371F-12 (2006).
[CrossRef]

2005 (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

2003 (2)

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[CrossRef] [PubMed]

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

1994 (1)

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Berson, D. M.

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[CrossRef] [PubMed]

Blask, D. E.

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Brainard, G. C.

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Chhajed, S.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

Chien, M. C.

Contreras, U.

Dauchy, R. T.

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Davis, W.

W. Davis and Y. Ohno, “Color qulity scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Deng, L.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Dunn, F. A.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[CrossRef] [PubMed]

Eskandari, H.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Gaska, R.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Geiger, C. D.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Gessmann, T.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

Hashimoto, K.

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Hattar, S.

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

He, G. X.

Ivanauskas, F.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Krause, J. A.

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Li, Y. L.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

Liao, H. W.

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

Moreno, I.

Narendran, N.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Nayatani, Y.

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Ohno, Y.

W. Davis and Y. Ohno, “Color qulity scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Salsbury, M.

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F, 63371F-12 (2006).
[CrossRef]

Sándor, N.

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Sauer, L. A.

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Schanda, J.

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

Shur, M. S.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Speier, I.

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F, 63371F-12 (2006).
[CrossRef]

Takao, M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[CrossRef] [PubMed]

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

Tien, C. H.

Vaicekauskas, R.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Vaitkevicius, H.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Worthey, J.

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

Xi, Y.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

Xu, J.

G. X. He, J. Xu, and H. F. Yan, “Spectral optimization of warm-white light-emitting diode lamp with both color rendering index (CRI) and special CRI of R9 above 90,” AIP Advances 1(3), 032160 (2011).
[CrossRef]

Yan, H. F.

G. X. He, J. Xu, and H. F. Yan, “Spectral optimization of warm-white light-emitting diode lamp with both color rendering index (CRI) and special CRI of R9 above 90,” AIP Advances 1(3), 032160 (2011).
[CrossRef]

G. X. He and H. F. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19(3), 2519–2529 (2011).
[CrossRef] [PubMed]

Yau, K. W.

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

Zhang, M. H.

Zheng, L. H.

Zhong, P.

Zukauskas, A.

A. Zukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

AIP Advances (1)

G. X. He, J. Xu, and H. F. Yan, “Spectral optimization of warm-white light-emitting diode lamp with both color rendering index (CRI) and special CRI of R9 above 90,” AIP Advances 1(3), 032160 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett. 93(5), 051115 (2008).
[CrossRef]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatric semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Breast Cancer Res. Treat. (1)

D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression,” Breast Cancer Res. Treat. 79(3), 313–320 (2003).
[CrossRef] [PubMed]

Color Res. Appl. (2)

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

J. Appl. Phys. (1)

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97(5), 054506 (2005).
[CrossRef]

J. Heuristics (1)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Lighting Res. Tech. (1)

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color qulity scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (2)

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

I. Speier and M. Salsbury, “Color temperature tunable white light LED system,” Proc. SPIE 6337, 63371F, 63371F-12 (2006).
[CrossRef]

Science (3)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295(5557), 1065–1070 (2002).
[CrossRef] [PubMed]

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[CrossRef] [PubMed]

Other (2)

International Commission on Illumination, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l'Éclairage, Vienna, Austria, 1995).

CIE, “TC 1-62: Color Rendering of White LED Light Sources,” in CIE 177:2007 (CIE, Vienna, Austria, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optimal and real relative SPDs of PC, red and blue LEDs

Fig. 2
Fig. 2

The PC/R/B LED cluster provides a triangular color gamut that encompasses the Planckian locus from 2222 K to 100000 K, so it is possible to achieve CCT tunability. Also showing the chromaticities of real PC/R/B LED cluster at CCTs of 2722 K, 3040 K, 3514 K, 4024 K, 4574 K, 4968 K, 5719 K and 6464 K.

Fig. 3
Fig. 3

Measured SPDs of the real PC/R/B LED cluster at different CCTs

Fig. 4
Fig. 4

Changes in CRI of the PC/R/B LED cluster caused by the peak wavelength shift of blue LED die

Fig. 5
Fig. 5

Changes in R9 of the PC/R/B LED cluster caused by the peak wavelength shift of blue LED die

Fig. 6
Fig. 6

Changes in CCT of the PC/R/B LED cluster caused by the peak wavelength shift of blue LED die

Fig. 7
Fig. 7

Changes in CRI of the PC/R/B LED cluster caused by the peak wavelength shift of red LED

Fig. 8
Fig. 8

Changes in R9 of the PC/R/B LED cluster caused by the peak wavelength shift of red LED

Fig. 9
Fig. 9

Changes in CCT of the PC/R/B LED cluster caused by the peak wavelength shift of red LED

Fig. 10
Fig. 10

Changes in CRI of the PC/R/B LED cluster caused by the peak wavelength shift of blue LED

Fig. 11
Fig. 11

Changes in R9 of PC/R/B LED cluster caused by the peak wavelength shift of blue LED

Fig. 12
Fig. 12

Changes in CCT of the PC/R/B LED cluster caused by the peak wavelength shift of blue LED

Tables (2)

Tables Icon

Table 1 CRI, R9, CQS and LER of the optimal PC/R/B LED cluster at CCTs of 2700 K to 6500 K.

Tables Icon

Table 2 Color rendering property and luminous efficacy of the real PC/R/B LED cluster at Ta = 25°C according to the predicted drive current (IF) of each LED at different CCTs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S PC/R/B (λ)= k PC S PC (λ, λ b , λ g , λ or )+ k R S R (λ, λ R )+ k B S(λ, λ B )
S PC (λ, λ b , λ g , λ or )= q b S b (λ, λ b )+ q g S g (λ, λ g )+ q or S or (λ, λ or )
F( λ b , λ g , λ or , λ R , λ B , q b , q g , q or )= i=1 8 LE R i (i=1,2,3 ,8) (under conditions of CRI i 90 and R9 i 90 with dC0.0054)

Metrics