Abstract

Hydrogen generation through direct photoelectrolysis of water was studied using photoelectrochemical (PEC) cells made of Mn-doped GaN photoelectrodes. In addition to its absorption of the ultraviolet spectrum, Mn-doped GaN photoelectrodes could absorb photons in the visible spectrum. The photocurrents measured from PEC cells made of Mn-doped GaN were at least one order higher than those measured from PEC cells made of undoped GaN-working electrodes. Under the visible light illumination and a bias voltage below 1.2 V, the Mn-doped GaN photoelectrodes could drive the water splitting reaction for hydrogen generation. However, hydrogen generation could not be achieved under the same condition wherein undoped GaN photoelectrodes were used. According to the results of the spectral responses and transmission spectra obtained from the experimental photoelectrodes, the enhanced photocurrent in the Mn-doped GaN photoelectrodes, compared with the undoped GaN photoelectrodes, was attributable to the Mn-related intermediate band within the band gap of GaN that resulted in further photon absorption.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  2. A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
    [CrossRef]
  3. R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987).
    [CrossRef]
  4. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
    [CrossRef]
  5. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
    [CrossRef]
  6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
    [CrossRef]
  7. K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
    [CrossRef]
  8. W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
    [CrossRef]
  9. J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
    [CrossRef]
  10. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
    [CrossRef]
  11. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
    [CrossRef]
  12. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
    [CrossRef]
  13. J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002).
    [CrossRef]
  14. I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
    [CrossRef]
  15. S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
    [CrossRef]
  16. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
    [CrossRef]
  17. A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
    [CrossRef]
  18. A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010).
    [CrossRef] [PubMed]
  19. F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, W. C. Lai, W. C. Tsai, and W. H. Chang, “Optical properties of Mn in regrown GaN-based epitaxial layers,” Opt. Mater. Express2(4), 469–477 (2012).
    [CrossRef]
  20. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
    [CrossRef]
  21. S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011).
    [CrossRef] [PubMed]
  22. M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007).
    [CrossRef]
  23. F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express19(S6Suppl 6), A1211–A1218 (2011).
    [CrossRef] [PubMed]
  24. M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
    [CrossRef]

2012 (1)

2011 (2)

2010 (3)

A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010).
[CrossRef] [PubMed]

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

2009 (1)

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

2008 (3)

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
[CrossRef]

2007 (4)

M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007).
[CrossRef]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

2005 (1)

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
[CrossRef]

2002 (2)

J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

1999 (1)

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

1998 (1)

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

1997 (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

1996 (1)

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

1987 (1)

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987).
[CrossRef]

1977 (1)

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Antolin, E.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Aryal, K.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

Campion, R. P.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Chang, C. M.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Chang, W. H.

Chen, D.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Chen, P. C.

Chi, G. C.

J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002).
[CrossRef]

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Cohen, D.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

DenBaars, S. P.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Ferguson, I.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

Foxon, C. T.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Fujii, K.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
[CrossRef]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Hirako, A.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

Hsu, C. K.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

Huang, F. W.

Hung, W. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Ito, T.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

Iwaki, Y.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

Jiang, H. X.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Jou, M. J.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Kainthla, R. C.

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987).
[CrossRef]

Karasawa, T.

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
[CrossRef]

Kim, I. H.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

Kim, T.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

Kuo, C. H.

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

Lai, W. C.

Lal, R.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Lee, M. L.

F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, W. C. Lai, W. C. Tsai, and W. H. Chang, “Optical properties of Mn in regrown GaN-based epitaxial layers,” Opt. Mater. Express2(4), 469–477 (2012).
[CrossRef]

S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011).
[CrossRef] [PubMed]

F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express19(S6Suppl 6), A1211–A1218 (2011).
[CrossRef] [PubMed]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
[CrossRef]

M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007).
[CrossRef]

Li, J.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Li, Z.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Lin, J. Y.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

Lin, Y. C.

Liu, B.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Liu, C. C.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Liu, S. Y.

S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011).
[CrossRef] [PubMed]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Luo, W.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Luque, A.

A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010).
[CrossRef] [PubMed]

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Marti, A.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Martí, A.

A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010).
[CrossRef] [PubMed]

Memming, R.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

Mishra, U.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Nakamura, S.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Novikov, S. V.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Nozik, A. J.

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

Ohkawa, K.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
[CrossRef]

Ono, M.

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

Pantha, B. N.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

Park, H. S.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

Park, Y. J.

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Sheu, J. K.

F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, W. C. Lai, W. C. Tsai, and W. H. Chang, “Optical properties of Mn in regrown GaN-based epitaxial layers,” Opt. Mater. Express2(4), 469–477 (2012).
[CrossRef]

S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011).
[CrossRef] [PubMed]

F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express19(S6Suppl 6), A1211–A1218 (2011).
[CrossRef] [PubMed]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
[CrossRef]

M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007).
[CrossRef]

J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002).
[CrossRef]

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Shu, Y. R.

M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
[CrossRef]

Su, Y. K.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

Tablero, C.

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Tsai, W. C.

Tu, S. J.

Waki, I.

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Xie, Z.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Ye, J. C.

S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011).
[CrossRef] [PubMed]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

Yeh, Y. H.

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

Zelenay, B.

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987).
[CrossRef]

Zhang, R.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Zou, Z.

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (8)

I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998).
[CrossRef]

I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002).
[CrossRef]

W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008).
[CrossRef]

J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008).
[CrossRef]

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010).
[CrossRef]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007).
[CrossRef]

M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999).
[CrossRef]

J. Cryst. Growth (1)

A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977).
[CrossRef]

J. Electrochem. Soc. (4)

R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987).
[CrossRef]

K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007).
[CrossRef]

S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010).
[CrossRef]

M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007).
[CrossRef]

J. Phys. Chem. (1)

A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996).
[CrossRef]

J. Phys. Condens. Matter (1)

J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005).
[CrossRef]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layer structures of the working electrodes (a) with Mn-doped GaN layer (PEC-I) and (b) without Mn-doped GaN layer (PEC-II).

Fig. 2
Fig. 2

Typical photocurrent density-bias curves of the experimental PEC cells.

Fig. 3
Fig. 3

Typical spectral responses of PEC-I and PEC-II (a) without a 400 nm long-pass filter and (b) with a 400 nm long-pass filter.

Fig. 4
Fig. 4

Transmittance spectra of GaN epitaxial layers grown on double-polished sapphire substrate. The inset shows the schematic energy diagram for GaN with Mn-related intermediate band.

Metrics