Abstract

Organic wavelength-selective mirrors are used to reduce the loss of emitted photons through the surface of a luminescent solar concentrator (LSC). A theoretical calculation suggests that application of a 400 nm broad reflector on top of an LSC containing BASF Lumogen Red 305 as a luminophore can reflect 91% of all surface emitted photons back into the device. Used in this way, such broad reflectors could increase the edge-emission efficiency of the LSC by up to 66%. Similarly, 175 nm broad reflectors could increase efficiency up to 45%. Measurements demonstrate more limited effectiveness and dependency on the peak absorbance of the LSC. At higher absorbance, the increased number of internal re-absorption events reduces the effectiveness of the reflectors, leading to a maximum increase in LSC efficiency of ~5% for an LSC with a peak absorbance of 1. Reducing re-absorption by reducing dye concentration or the coverage of the luminophore coating results in an increase in LSC efficiency of up to 30% and 27%, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).
  3. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt.16(10), 2684–2689 (1977).
    [CrossRef] [PubMed]
  4. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
    [CrossRef]
  5. R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
    [CrossRef]
  6. M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt.50(2), 163–169 (2011).
    [CrossRef] [PubMed]
  7. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
    [CrossRef]
  8. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
    [CrossRef]
  9. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
    [CrossRef]
  10. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
    [CrossRef]
  11. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012).
    [CrossRef]
  12. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt.47(36), 6763–6768 (2008).
    [CrossRef] [PubMed]
  13. C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29(140), 883 (1933).
    [CrossRef]
  14. M. G. Debije, M.-P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
    [CrossRef] [PubMed]
  15. D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
    [CrossRef]
  16. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
    [CrossRef]
  17. D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
    [CrossRef]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am.62(4), 502–510 (1972).
    [CrossRef]
  19. H. Wöhler, M. Fritsch, G. Haas, and D. A. Mlynski, “Characteristic matrix method for stratified anisotropic media: Optical properties of special configurations,” J. Opt. Soc. Am. A8(3), 536–540 (1991).
    [CrossRef]
  20. N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
    [CrossRef]
  21. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt.48(2), 212–220 (2009).
    [CrossRef] [PubMed]
  22. S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express18(S4Suppl 4), A536–A543 (2010).
    [CrossRef] [PubMed]
  23. S. Tsoi, C. W. M. Bastiaansen, and M. G. Debije, “Enhancing light output of fluorescent waveguides with a microlens system,” Proc. 24th Eur. Photovolt. Sol. Energ. Conf., 377–380.
  24. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
    [CrossRef] [PubMed]
  25. K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
    [CrossRef]
  26. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012).
    [CrossRef]

2012 (2)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012).
[CrossRef]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012).
[CrossRef]

2011 (2)

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt.50(2), 163–169 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt.48(2), 212–220 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

2003 (2)

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

2000 (1)

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

1999 (1)

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

1994 (1)

R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
[CrossRef]

1991 (1)

1989 (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

1977 (2)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).

J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt.16(10), 2684–2689 (1977).
[CrossRef] [PubMed]

1976 (1)

1972 (1)

1933 (1)

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29(140), 883 (1933).
[CrossRef]

Alamiry, M.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Barnham, K. W. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Bastiaansen, C. W.

Bastiaansen, C. W. M.

Berreman, D. W.

Bhaumik, K.

Broer, D. J.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express18(S4Suppl 4), A536–A543 (2010).
[CrossRef] [PubMed]

M. G. Debije, M.-P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Buxton, B. F.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Carter, S. A.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Chatten, A. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Cornelissen, H. J.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

de Boer, D. K. G.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Debije, M. G.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012).
[CrossRef]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt.50(2), 163–169 (2011).
[CrossRef] [PubMed]

M. G. Debije, M.-P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express18(S4Suppl 4), A536–A543 (2010).
[CrossRef] [PubMed]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt.47(36), 6763–6768 (2008).
[CrossRef] [PubMed]

Eames, P. C.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

Ekins-Daukes, N. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Fritsch, M.

Gallagher, S. J.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Giesbers, M. P.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Goetzberger, A.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).

Greube, W.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).

Haaren, J. A. M. M. V.

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Haas, G.

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Hoeks, T. L.

Huck, N. P. M.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Jones, A. C.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Jorgensen, C.

R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
[CrossRef]

Kastelijn, M. J.

Keur, W.

Lambe, J.

Levitt, J. A.

Lin, C.-W.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Lub, J.

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Malik, M. A.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Meijerink, A.

Mlynski, D. A.

Mol, G. N.

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Moudam, O.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Nadkarni, P. J.

Nedumbamana, S.

Norton, B.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

O'Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Olson, J. D.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Oseen, C. W.

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29(140), 883 (1933).
[CrossRef]

Reisfeld, R.

R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
[CrossRef]

Richards, B. S.

Richardson, P.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Robertson, N.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Ronda, C. R.

Rowan, B. C.

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

Shamrakov, D.

R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
[CrossRef]

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Sholin, V.

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

Staupe, I.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Thirouard, A.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Tsoi, S.

Van, M.-P.

van der Blom, R. H. L.

Velate, S.

Verbunt, P. P. C.

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Weber, W. H.

Wilson, L. R.

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

Wöhler, H.

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).

Chem. Commun. (Camb.) (1)

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009).
[CrossRef] [PubMed]

Dyes Pigments (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

J. Appl. Phys. (1)

V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Opt. Express (2)

Sol. Energy (1)

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994).
[CrossRef]

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003).
[CrossRef]

Trans. Faraday Soc. (1)

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29(140), 883 (1933).
[CrossRef]

Other (1)

S. Tsoi, C. W. M. Bastiaansen, and M. G. Debije, “Enhancing light output of fluorescent waveguides with a microlens system,” Proc. 24th Eur. Photovolt. Sol. Energ. Conf., 377–380.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The working principle of wavelength selective mirrors. Green photons in the solar spectrum are transmitted by the reflector and absorbed by the dye molecules within the waveguide. Red emitted photons are reflected back into the device.

Fig. 2
Fig. 2

The simulated reflective properties of 150 nm broad reflectors made from gradient pitch cholesterics. (a) The reflectivity of a full reflector made by stacking a right- and a left-handed cholesteric on top of each other and (b) the reflectivity of a full reflector made by right handed cholesterics on both sides of a half wave retarder centered at 560 nm are used to make a full reflector. The color in these plots represents the reflectivity of the cholesteric reflectors; dark blue is 0% reflection and dark red is 100% reflection.

Fig. 3
Fig. 3

Calculated efficiency of cholesterics in reflecting light emitted from the top surface of a Red 305 containing LSC for narrowband reflectors (white squares), 175 nm broad gradient pitch reflectors (grey squares), 400 nm broad gradient pitch cholesteric reflectors (black squares), layered reflectors made from 2 narrowbands (filled red circles for stacked right and left handed reflectors and open red circles for stacked right handed reflectors on both sides of a half wave retarder centered at 560 nm) as a function of the onset wavelength of the cholesteric reflectors.

Fig. 4
Fig. 4

Normalized absorption and emission spectrum of Red 305 in polycarbonate.

Fig. 5
Fig. 5

The fraction of the incoming sunlight within the absorption band of the dye that could be absorbed by the luminophore (Red 305) that passes through the cholesterics (Fea) made from narrowband reflectors (white squares), 175 nm broad gradient pitch reflectors (grey squares), 400 nm broad gradient pitch cholesteric reflectors (black squares), layered reflectors made from 2 narrow bands (filled red circles for stacked right and left handed reflectors and open red circles for stacked right handed reflectors on both sides of a half wave retarder centered at 560 nm).

Fig. 6
Fig. 6

The calculated maximum possible increase in LSC efficiency after application of cholesteric reflectors to an LSC containing Red 305 as a luminophore. The reflectors are made from narrowband cholesterics (white squares), 175 nm broad (grey squares) and 400 nm broad gradient pitch cholesteric (black squares), layered cholesteric and reflectors made from 2 narrowbands (red circles for stacked right and left handed reflectors and open red circles for stacked right handed reflectors on both sides of a half wave retarder centered at 560 nm). The main graph is an enlargement of the graph region which gave an increase in efficiency; the inset shows all data.

Fig. 7
Fig. 7

Schematic depiction of the measurement setup.

Fig. 8
Fig. 8

Reflection spectra of a broadband reflector with an onset wavelength of 730 nm made from 2 layered right handed narrowband reflectors on both sides of a half wave retarder centered at 560 nm, both experimental (black) and calculated (gray).

Fig. 9
Fig. 9

Relative LSC efficiency after application of broadband reflectors with respect to the LSC without the broadband reflector. The LSCs contain Red 305 with different peak absorbance: calculated (black), 0.05 (red), 1.01 (green), 2.36 (blue).

Fig. 10
Fig. 10

Relative efficiency of patterned LSCs after application of broadband reflectors with respect to the patterned LSC without the broadband reflector. The LSCs are topped with a coating containing Red 305 with a peak absorbance of 1.0 with different pattern coverage of the surface: calculated (black), 20% (green), 30% (cyan), 50% (red), 70% (yellow), 100% (blue).

Tables (2)

Tables Icon

Table 1 Maximum Reflection Efficiency of the Cholesteric for Surface Emitted Light of LSCs Containing Red 305 as Luminophore

Tables Icon

Table 2 Maximum Calculated Increase in LSC Efficiency after Addition of the Cholesteric Reflectors to LSCs Containing Red 305 as Luminophore

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ ¯ = n ¯ p
λ θ ¯ = λ 0 ¯ cos[ sin 1 ( sinθ n ¯ ) ]
Δλ=pΔn
η refl = photon s surface E s ( λ )r( θ,λ ) E p ( θ )dθdλ photon s surface E s ( λ ) E p ( θ )dθdλ
f chol EA = I( λ )*( 1r( λ ) )*A( λ )dλ I( λ )*A( λ )dλ
η LSC,max = n edge,chol n edge,bare = f chol EA n edge,bare n edge,bare + n edge,SL,chol n edge,bare
n edge,SL,chol = f chol EA *QE* ϕ SL * η chol
n edge,bare =QE* ϕ wm
η LSC,max = f chol EA ( 1+ η chol )

Metrics