Abstract

Metal nanoparticles are efficient antennas for light. If embedded in a semiconductor material, they can enhance light absorption in the semiconductor, due to the strong plasmonic near-field coupling. We use numerical simulations to calculate the absorption enhancement in the semiconductor using Ag nanoparticles with diameters in the range 5–60 nm for crystalline Si, amorphous Si, a polymer blend, and Fe2O3. We study single Ag particles in a 100×100×100 nm semiconductor volume, as well as periodic arrays with 100 nm pitch. We find that in all cases Ohmic dissipation in the metal is a major absorption factor. In crystalline Si, while Ag nanoparticles cause a 5-fold enhancement of the absorbance in the weakly absorbing near-bandgap spectral range, Ohmic losses in the metal dominate the absorption. We conclude crystalline Si cannot be sensitized with Ag nanoparticles in a practical way. Similar results are found for Fe2O3. The absorbance in the polymer blend can be enhanced by up to 100% using Ag nanoparticles, at the expense of strong additional absorption by Ohmic losses. Amorphous Si cannot be sensitized with Ag nanoparticles due to the mismatch between the plasmon resonance and the bandgap of a-Si. By using sensitization with Ag nanoparticles the thickness of some semiconductor materials can be reduced while keeping the same absorbance, which has benefits for materials with short carrier diffusion lengths. Scattering mechanisms by plasmonic nanoparticles that are beneficial for enhanced light trapping in solar cells are not considered in this paper.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
    [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
    [CrossRef]
  6. K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  7. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
    [CrossRef]
  8. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
    [CrossRef] [PubMed]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
    [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
    [CrossRef]
  11. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
    [CrossRef]
  12. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
    [CrossRef] [PubMed]
  13. V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
    [CrossRef] [PubMed]
  14. P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
    [CrossRef]
  15. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
    [CrossRef]
  16. S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
    [CrossRef]
  17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
    [CrossRef]
  18. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
    [CrossRef]
  19. S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
    [CrossRef]
  20. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
    [CrossRef]
  21. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
    [CrossRef]
  22. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
    [CrossRef] [PubMed]
  23. E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
    [CrossRef]
  24. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
    [CrossRef]
  25. M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
    [CrossRef]
  26. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
    [CrossRef] [PubMed]
  27. A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010).
    [CrossRef]
  28. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
    [CrossRef] [PubMed]
  29. K. Tanabe, “A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
    [CrossRef]
  30. FDTD solutions ( www.lumerical.com ).
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
    [CrossRef]
  33. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
    [CrossRef]
  34. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
    [CrossRef]

2012 (1)

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

2011 (4)

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

2010 (5)

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

2009 (5)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
[CrossRef] [PubMed]

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

K. Tanabe, “A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

2008 (7)

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
[CrossRef]

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

2004 (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

2000 (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

Atwater, H.A.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

Beck, F. J.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

Bergli, J.

M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
[CrossRef]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Brissonneau, V.

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Catchpole, K. R.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Cesar, I.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

Derbal-Habak, H.

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Duche, D.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

Escoubas, L.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Ferry, V. E.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

Flory, F.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Galperin, Y. M.

M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
[CrossRef]

Grätzel, M.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

Grätzel, M. J.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Hupp, J. T.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
[CrossRef] [PubMed]

Jo, J.

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

Kay, A.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

Kim, D. Y.

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

Kim, S. S.

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

Kirkengena, M.

M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
[CrossRef]

Koetse, M. M.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

Kroo, J. M.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Le Formal, F.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

Le Rouzo, J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Lee, J.-Y.

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Lüth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Moet, D. J. D.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Mokkapati, S.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

Na, S.-I.

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

Nah, Y.-C.

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

Oh, S. H.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

Peumans, P.

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Polman, A.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Schatz, G. C.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
[CrossRef] [PubMed]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

Schropp, R.E.I.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

Simon, J. J.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Sivula, K.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

Slooff, L. H.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Spinelli, P.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

Standridge, S. D.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

Sweelssen, J.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Tanabe, K.

K. Tanabe, “A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

Thimsen, E.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

Torchio, P.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

van de Groep, J.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

van Lare, C.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

van Lare, M.

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

Vedraine, S.

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Veenstra, S. C.

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

Verschuuren, M.A.

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

Walters, R. J.

Warren, S. C.

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

Zboril, R.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Appl. Phys. Lett. (12)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
[CrossRef]

S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008).
[CrossRef]

L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007).
[CrossRef]

Energies (1)

K. Tanabe, “A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

J. Opt. (1)

P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012).
[CrossRef]

Nano Lett. (3)

E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011).
[CrossRef]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010).
[CrossRef]

Opt. Express (2)

Phys. Chem. C (1)

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000).
[CrossRef]

S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011).
[CrossRef]

Other (3)

FDTD solutions ( www.lumerical.com ).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated absorption spectra of a bare substrate (black dashed line), absorption in the substrate with a 30-nm-diameter Ag NP (blue) and absorption in the Ag NP (red), for a c-Si (a) and a PF10TBT:PCBM (b) hosting semiconductors. A clear increase in absorption is observed for wavelengths around the NP plasmon resonance. In the case of a c-Si substrate, the near-field absorption in the NP is much stronger than in the semiconductor. The inset shows a sketch of the simulation geometry.

Fig. 2
Fig. 2

Absorption enhancement (left axis) and average absorptance (right axis), weighted over the AM1.5 solar spectrum in the 300–1100 nm spectral range, as a function of the Ag NP diameter. The panels refer to c-Si (a), PF10TBT:PCBM (b), a-Si (c), and Fe2O3 (d) embedding media. In each panel, the inset shows the dipolar (D, black) and quadrupolar (Q, red) LSPR wavelengths. An absorption enhancement up to a factor of 2 can be achieved in the polymer substrate, due to the spectral match of the LSPR resonance with the spectral range where the polymer is strongly absorbing. In c-Si or Fe2O3, the LSPR resonance is in a spectral region where the material is poorly absorbing, and absorption is thus strongly limited by the losses in the metal NP. In a-Si, the resonant wavelength is larger than the bandgap wavelength, and no absorption enhancement is observed.

Fig. 3
Fig. 3

Fraction of the incident power that is absorbed in the semiconductor (blue), in the metal NP (red) or not absorbed (green), as a function of particle diameter, for c-Si (a), PF10TBT:PCBM (b), a-Si (c) and Fe2O3 (d). All data are averaged by weighting over the AM1.5 solar spectrum in the 300–1100 nm spectral range. The reduction of the non-absorbed power (green) is associated with an increase of the absorption in the substrate and in the NP. For the polymer substrate, the absorption in the active layer is larger than the losses in the metal. For a c-Si and Fe2O3 substrates, the strong absorption in the NP strongly limits the plasmonic near-field absorption enhancement in the substrate. In an a-Si substrate no significant change is observed as a result of the resonant wavelength being larger than the bandgap wavelength.

Fig. 4
Fig. 4

(a) LSPR dipolar resonance wavelength (black line, vertical axis) as a function of the shell thickness (bottom axis), for a Ag/SiO2 core-shell particle embedded in a c-Si layer. The Ag core diameter is 30 nm. A strong blue shift is observed as the silica shell thickness increases. Also shown is the absorption coefficient of c-Si (red line, top axis) as a function of wavelength. Increasing the shell thickness shifts the resonance into a spectral range where Si is more absorbing. (b) Absorption enhancement, averaged by weighting over the AM1.5 solar spectrum in the 300–1100 nm spectral range, in the c-Si substrate as a function of the shell thickness. A reduction in absorption is observed for larger shell thicknesses as a result of the reduced overlap of the near-field with the active material.

Fig. 5
Fig. 5

AM1.5 averaged absorption in c-Si (a) and PF10TBT:PCBM (b) for oblate (circles) and prolate (crosses) embedded Ag nanoparticles. Absorption in the semiconductor (blue) and in the metal NP (red) is shown as a function of the ratio of the short radius over the long radius of the spheroid. The absorption of a bare semiconductor volume is shown for reference (dashed black line). The graph shows that an increase in the absorption in the semiconductor due to the presence of the NP is always associated with strong Ohmic losses in the metal NP.

Fig. 6
Fig. 6

Average absorption for arrays of silver NPs embedded in a c-Si (a) and PF10TBT:PCBM (b) substrate. Data are plotted for particles with 5 nm (dash-dotted lines) and 40 nm (dashed lines) diameter, as a function of the ratio of the array pitch over the particle diameter. Absorption in the hosting material is shown in blue, absorption in the metal NPs is shown in red. The absorption in a substrate without NPs is shown for reference (black solid line). For both c-Si and PF10TBT:PCBM, the highest absorption in the semiconductor is achieved for NP arrays with short inter-particle distance compared to the NP size. In the case of c-Si (a), the increase in absorption in the c-Si layer comes at the expense of a significant increase in the ohmic losses in the metal NPs.

Fig. 7
Fig. 7

(a) Sketch of the simulation geometry. A square array of 40-nm-diameter Ag NPs, spaced by 100 nm, is placed 40 nm below the surface of a semi-infinite semiconductor layer. (b, c) Absorptance per unit length (top axis) as a function of depth (right axis) for a bare substrate (black), in a substrate with embedded Ag NPs (blue) and in the Ag NP array (red), for c-Si (b) and PF10TBT:PCBM (c). Absorption in the active layer is enhanced by the presence of the NP in the proximity of the NP, due to the strong plasmonic near field. (d, e) Absorptance in a bare substrate (black) and in a substrate containing a Ag NP array (blue), for a c-Si (d) and PF10TBT:PCBM (e) substrates, as a function of layer thickness. For thinner layers, absorption is enhanced by the LSPR near field of the NP. For thicker layer, the bare substrate shows larger absorption than a substrate with NPs, as a result of the metal losses in the latter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P abs ( ω ) = 1 2 ω Im ( n ( x , y , z , ω ) ) E ( x , y , z , ω ) 2 d V

Metrics