Abstract

We have designed a high efficiency organic solar cell with light trapping structure on transference cylindrical substrate. An electrical and optical simulation of the light trapping structure has been performed on the basis of finite element and transfer matrix formalism methods. Absorption spectrum, internal quantum efficiency, external quantum efficiency, maximum power output and efficiency of the organic solar cell are simulated and presented in terms of three variables: the height, diameter of the glass substrate and the thickness of the organic active layer. The efficiency of the proposed organic solar cell with light trapping structure is enhanced by a factor of 2 than the similar structure on the flat plain glass substrate. The optimum organic active layer thickness to achieve the highest efficiency is shifted from 65 to 20 nm. Finally, we have investigated the effect of light incident angle on the performance of the proposed cell structure.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Optical modeling of organic solar cells based on CuPc and C60

Florent Monestier, Jean-Jacques Simon, Philippe Torchio, Ludovic Escoubas, Bernard Ratier, Wassim Hojeij, Bruno Lucas, André Moliton, Michel Cathelinaud, Christophe Defranoux, and François Flory
Appl. Opt. 47(13) C251-C256 (2008)

Design of light-trapping microscale-textured surfaces for efficient organic solar cells

Kanwar S. Nalwa and Sumit Chaudhary
Opt. Express 18(5) 5168-5178 (2010)

Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell

Shu-Ju Tsai, Mihaela Ballarotto, Danilo B. Romero, Warren N. Herman, Hung-Chih Kan, and Raymond J. Phaneuf
Opt. Express 18(S4) A528-A535 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
    [Crossref] [PubMed]
  2. Konarka, “Single junction solar cell by Konarka with an efficiency of 8.3% on an area of 1 cm2”.
  3. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
    [Crossref]
  4. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
    [Crossref]
  5. M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
    [Crossref]
  6. A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 240–245 (2008).
    [Crossref]
  7. T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
    [Crossref]
  8. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
    [Crossref]
  9. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [Crossref] [PubMed]
  10. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 81–98 (1998).
    [Crossref]
  11. Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
  12. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
    [Crossref]
  13. S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
    [Crossref]
  14. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
    [Crossref]
  15. Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
    [Crossref]
  16. Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).
  17. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
    [Crossref] [PubMed]
  18. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
    [Crossref]
  19. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
    [Crossref]

2011 (1)

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

2010 (3)

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
[Crossref]

2009 (4)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
[Crossref]

T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
[Crossref]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

2008 (2)

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 240–245 (2008).
[Crossref]

2007 (2)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
[Crossref]

2006 (1)

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

2005 (1)

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

2004 (1)

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

1998 (1)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 81–98 (1998).
[Crossref]

1995 (1)

Agostinelli, T.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Alamariu, B. A.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Anthopoulos, T. D.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Brabec, C. J.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
[Crossref]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Bradley, D. D. C.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Campoy-Quiles, M.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Carroll, D. L.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
[Crossref]

Carroll, D.L.

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Cha, H. J.

M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
[Crossref]

Cotter, J. E.

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 81–98 (1998).
[Crossref]

Dennler, G.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
[Crossref]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Duan, X.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Eckert, R. D.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Etchegoin, P. G.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Fang, G.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Feng, N.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Ferenczi, T.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Forberich, K.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Gaudiana, R. A.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Gong, X.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Hardin, B. E.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Heeger, A. J.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Heine, C.

Hiesgen, R.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Hinsch, A.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Hong, C.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Hoppe, H.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Huang, H.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Inganäs, O.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Jang, J.

M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
[Crossref]

Kim, Y.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Kimerling, L. C.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Kirchartz, T.

T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
[Crossref]

Kraut, J.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Lee, K.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Lee, M. R.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Li, Y.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

Liu, J.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
[Crossref]

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Ma, W.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Mayer, A. C.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

McGehee, M. D.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Meerholz, K.

A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 240–245 (2008).
[Crossref]

Meissner, D.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Morf, R. H.

Moulé, A. J.

A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 240–245 (2008).
[Crossref]

Namboothiry, M. A. G.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
[Crossref]

Nelson, J.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Nie, W.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Niggemann, M.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Partridge, A.

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

Peterson, E. D.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Rau, U.

T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
[Crossref]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Rowell, M. W.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Ryu, M. S.

M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
[Crossref]

Sariciftci, N. S.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Scharber, M. C.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
[Crossref]

Scully, S. R.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Stavrinou, P. N.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Taretto, K.

T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
[Crossref]

Tormen, M.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Tvingstedt, K.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Wang, M.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Winder, C.

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Xue, D.

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Yang, C.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Yi, Y.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Zeng, L.

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Zhou, W.

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

Zilio, S. D.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Adv. Funct. Mater. (2)

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater. 14(10), 1005–1011 (2004).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (2)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.) 21(13), 1323–1338 (2009).
[Crossref]

A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 240–245 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).

Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett. 96, 243503 (2010).

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90(13), 133515 (2007).
[Crossref]

Curr. Appl. Phys. (1)

M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys. 10(2), S206–S209 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1827–1837 (2010).
[Crossref]

J. Appl. Phys. (2)

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84(1), 81–98 (1998).
[Crossref]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

J. Phys. Chem. C (1)

T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C 113(41), 17958–17966 (2009).
[Crossref]

Mater. Today (1)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Microelectron. Eng. (1)

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Nat. Mater. (1)

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Science (1)

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009).
[Crossref] [PubMed]

Sol. Energy (1)

H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy 85(3), 450–454 (2011).
[Crossref]

Other (1)

Konarka, “Single junction solar cell by Konarka with an efficiency of 8.3% on an area of 1 cm2”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the proposed OPV device structure on cylindrical glass substrate. The device structure contains layers of Al, BCP, CuPc/PCBM active layer, PEDOT:PSS, ITO and cylindrical glass substrate.

Fig. 2
Fig. 2

It is the cross sectional view of the proposed OPV structure on cylindrical glass substrate. The random pattern plain at the back of the glass substrate represents the diffuse reflector. When the light is incident on the diffuse reflector, it will be scattered into different directions.

Fig. 3
Fig. 3

Schematic diagram of the conventional OPV device structure on flat plain glass substrate, called control-Planar OPV device. The device structure contains layers of Al, BCP, CuPc/PCBM active layer, PEDOT:PSS, ITO and flat glass substrate with similar layer thicknesses of the proposed OPV device.

Fig. 4
Fig. 4

Simulated absorption spectrum of proposed OPV device structure for 20(a), 40 (b) and 80 (c) nm thick active layers on 5 cm long and 1 mm diameter glass substrate. The absorption spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/(CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 5
Fig. 5

Simulated absorption spectrum of proposed OPV device structure for 1, 3, 5 and 7 cm heights of glass substrate with 1 mm diameter and 20 nm thick active layer. The absorption spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 6
Fig. 6

Simulated absorption spectrum of proposed OPV device structure for 1, 3, 4 and 6 mm diameters of the glass substrate for fixed height 5 cm and 20 nm thick active layer. The absorption spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 7
Fig. 7

Simulated EQE spectrum of proposed OPV device structure for active layer thicknesses 20 (a), 40 (b) and 80 nm (c) with glass substrate height 5 cm and diameter 1mm. The EQE spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/CuPc/PCBM/12 nm BCP/100 nm Al.

Fig. 8
Fig. 8

Simulated EQE and IQE spectrum of proposed OPV device structure for 1, 3, 5, and 7 cm heights of glass substrate with fixed diameter 1mm. The EQE and IQE spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 9
Fig. 9

Simulated EQE and IQE spectrum of proposed OPV device structure for 1, 3, and 6 mm diameters of glass substrate with fixed height 5 cm. The EQE and IQE spectrum of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 10
Fig. 10

The simulated effective power conversion efficiency, in the level of module, of the proposed OPV device structure for 1, 3, 5, 7 and 9 cm height of glass substrate with 1 mm diameter. The efficiency of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 11
Fig. 11

The simulated effective power conversion efficiency of proposed OPV device structure, in the level of module, for 1, 3, 5, and 7 mm diameters glass substrate with 5 cm height. The conversion efficiency of conventional OPV device on flat plain glass substrate is also compared with the proposed structure. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Fig. 12
Fig. 12

The simulated effective conversion efficiency, in the level of module, of proposed OPV device structure for different incident angle of light for 7, 9 and 10 cm height of glass substrate with 1 mm diameter. Positive and negative means the incident angle at left and right side of the normal line. The structure layers thickness was considered as 160 nm ITO/32 nm PEDOT: PSS/20 nm (CuPc/PCBM)/12 nm BCP/100 nm Al.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

R n = 1 2 [ sin 2 ( θ 1 θ 2 ) sin 2 ( θ 1 + θ 2 ) + tan 2 ( θ 1 θ 2 ) tan 2 ( θ 1 + θ 2 ) ]
R= ( n 2 n 1 n 2 + n 1 ) 2
d Φ L (θ,ϕ)= I max cos(θ)sin(θ)dθdϕ
Φ total (λ)=π I max =Wf(λ)(1R)βπ r 2
d Φ L (θ,ϕ,λ)=Wf(λ)(1R)β r 2 cos(θ)sin(θ)dθdϕ
d Φ s_polarized (θ,ϕ,λ)=0.5Wf(λ)(1R)β r 2 cos(θ)sin(θ)dθdϕ
d Φ p_polarized (θ,ϕ,λ)=0.5Wf(λ)(1R)β r 2 cos(θ)sin(θ)dθdϕ
I jk = 1 t jk ( 1 r jk r jk 1 )
t jk s = 2sin θ k cos θ j sin( θ j + θ k ) r jk s = sin( θ j θ k ) sin( θ j + θ k ) t jk p = 2sin θ k cos θ j sin( θ j + θ k )cos( θ j θ k ) r jk p = tan( θ j θ k ) tan( θ j + θ k )
E j (x)= E j + (x)+ E j (x)= t j + E 0 + + t j E 0 +
Q j (x)= 1 2 c ε 0 α j η j | E j (x) | 2
Q(x)=αT I 0 [ e αx + ρ j ''2 e α(2 d j x) +2 ρ '' e αd cos( 4πη λ (dx)+δ)]
n t =D 2 n x 2 n τ + Q(x) hν =0
n(x)= θ 1 αTN D( β 2 α 2 ) [ A e βx +B e βx + e αx + C 1 e αx + C 2 cos( 4πη λ (dx)+ δ '' ) ]
I=q L 2 τ ( n x ) x= x DA
I cell = I D_s + I D_p + I A_s + I A_p
n absorbed (λ)= 0 π/2 0 2π [ 0 d A k=1 m G A_ k (x)dx+ 0 d D k=1 m G D_k (x)dx ]dθdε
n incident (λ)= Wf(λ) A glass hυ
AS(λ)= n absorbed (λ) n incident (λ) = hυ· 0 π/2 0 2π [ 0 d A k=1 m G A_ k (x)dx+ 0 d D k=1 m G D_k (x)dx ]dθdε Wf(λ) A glass
EQE(λ)= η a η c Γ= hυ 0 π/2 0 2π k=1 m I k (λ,θ,ϕ) q dθdϕ W A glass f(λ)
IQE= EQE(λ) Absorption(λ)
I sc =q EQE(λ)W A glass f(λ)dλ
η= I sc V oc FF W A glass = I sc =q EQE(λ)f(λ)dλ V oc FF
η mod = πη 4

Metrics