Abstract

We investigate the dual optical behaviour of a photonic grating interface presenting a more or less important index contrast, showing either efficient broadband reflectivity, either high transmittance within the same spectral window, depending on the direction of the incident light. This behaviour is reminiscent of a diode one and could find interesting applications. A typical example is given for thin crystalline silicon solar cells where the rear side is directly nano-textured to trap light without metal reflector (bifacial device), well compatible with an integration in a photovoltaic module.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang–Hasnain, “High–contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26, 014043 (2011).
    [CrossRef]
  2. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
    [CrossRef]
  3. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express15, 12443–12449 (2007).
    [CrossRef] [PubMed]
  4. T. Clausnitzer, T. Kampfe, E.-B. Kley, A. Tunnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express13, 10448–10456 (2005).
    [CrossRef] [PubMed]
  5. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
    [CrossRef]
  6. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18, 16973–16988 (2010).
    [CrossRef] [PubMed]
  7. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
    [CrossRef]
  8. M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
    [CrossRef]
  9. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34, 2476–2482 (1995).
    [CrossRef] [PubMed]
  10. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin–film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15, 16986–17000 (2007).
    [CrossRef] [PubMed]
  11. M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).
  12. D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
    [CrossRef]
  13. S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).
  14. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
    [CrossRef]
  15. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
    [CrossRef]

2011 (1)

C. J. Chang–Hasnain, “High–contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26, 014043 (2011).
[CrossRef]

2010 (2)

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18, 16973–16988 (2010).
[CrossRef] [PubMed]

2007 (4)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express15, 12443–12449 (2007).
[CrossRef] [PubMed]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin–film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15, 16986–17000 (2007).
[CrossRef] [PubMed]

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
[CrossRef]

2005 (1)

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

2001 (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

1995 (1)

1990 (1)

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Benbakir, B.

Bermejo, S.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Bermel, P.

Blasi, B.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

Boutami, S.

Branz, H. M.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
[CrossRef]

Chang-Hasnain, C. J.

Chang–Hasnain, C. J.

C. J. Chang–Hasnain, “High–contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26, 014043 (2011).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Cheben, P.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Clausnitzer, T.

Curtis, B. J.

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Delage, A.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Densmore, A.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Ferré, R.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Gale, M. T.

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Glunz, S. W.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Green, M. A.

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
[CrossRef]

Grenville, A.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Grohe, A.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

Hauser, H.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

Heine, C.

Hermle, M.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Hofmann, M.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Janz, S.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Joannopoulos, J. D.

Kampfe, T.

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

Karagodsky, V.

Keszler, D. A.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Kiess, H.

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Kimerling, L. C.

Kley, E.-B.

Lamontagne, B.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Lapointe, J.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Leclercq, J. L.

Lee, B. G.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Letartre, X.

Luo, C.

Martin, I.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Meyers, S. T.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Morf, R.

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Morf, R. H.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Parriaux, O.

Pelzer, D.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

Peschel, U.

Peters, M.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

Post, E.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Preu, R.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Regreny, P.

Roth, T.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Rudiger, M.

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

Schmid, J. H.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Schultz, O.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Sedgwick, F. G.

Tishchenko, A. V.

Tunnermann, A.

Vetter, M.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Viktorovitch, P.

Waldron, P.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Warta, W.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Weiss, D. N.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Willeke, G.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Wolke, W.

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Xu, D.-X.

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Yuan, H.–C.

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

Zeng, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78, 142–143 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang–Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518–520 (2004).
[CrossRef]

J. Appl. Phys. (1)

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

D. N. Weiss, H.–C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B28, C6M98–C6M103 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46, 3333–3336 (2007).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

M. T. Gale, B. J. Curtis, H. Kiess, and R. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE1272, 60 (1990).
[CrossRef]

Semicond. Sci. Technol. (1)

C. J. Chang–Hasnain, “High–contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26, 014043 (2011).
[CrossRef]

Other (3)

M. Peters, M. Rudiger, D. Pelzer, H. Hauser, M. Hermle, and B. Blasi, “Electro–optical modelling of solar cells with photonic structures,” 25th European Photovoltaic Solar Energy Conference and Exhibition, 87–91 (2010).

J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, A. Delage, A. Densmore, B. Lamontagne, P. Waldron, and D.-X. Xu, “Subwavelength grating structures in silicon-on-insulator waveguides,” Advances in Optical Technologies: Special Issue on Silicon Photonics, 2008, Article ID 685489, doi: .
[CrossRef]

S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferré, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, “Comparison of different dielectric passivation layers application in industrially feasible high efficiency crystalline silicon solar cells,” Proc. 20th European Photovoltaic Solar Energy Conference, 572–577 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the non-symmetrical grating structure and parameters. Red arrows are opposite directions of incident light (direction 1 by default). (b) Reflectivity of the system taking a rectangular profile and high contrast indexes: n1 = nSi(λ) (the imaginary part is omitted), n2 = 2, n3 = 1, P = 650 nm, h1 = 325nm, h2 = 0, w/P = 0.55. (c) Efficiencies of the first reflected orders in the TM case.

Fig. 2
Fig. 2

(a) Case of a low contrast index grating, with fixed n1 = 3.5 and n2 = 3.0, needing to take a sufficiently thick grating to retrieve a high and braadband internal reflectivity. (b) Reflectivity diagram in function of the filling factor for optical indexes globally low: n1 = 2.5, n2 = 1.5, n3 = 1, P = 700nm, h1 = 400nm (h2 = 0), in TE polarization.

Fig. 3
Fig. 3

(a) Sketch showing a parallel (not an analogy) between the structure and a diode. The system acts as a passive photonic valve. (b) Reflection/Transmission spectra demonstrating this dual optical behaviour, with an additional sub-layer h2 thick (see Fig. 1(a)) optimizing transmission in the passing direction. (c) Angular responses in the blocking directon (for an incidence angle taken within the high index medium).

Fig. 4
Fig. 4

Reflectivity spectra for different structuration profiles, in TE polarization (numerical examples). The period is P = 700nm.

Fig. 5
Fig. 5

(left) Internal optical absorption of monocrystalline silicon for different substrate thicknesses (one passage of light). (right) Sketch of a PV module architecture integrating a bifacial c-Si cell with a photonic valve at the rear side and a conformal passivation layer. Arrows indicate various directions of light with respect to the texture.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 h 1 λ / | n eff ( i ) n eff ( j ) |

Metrics