Abstract

Nanophotonics can guide the design of novel structures for light-trapping in ultra-thin photovoltaic cells. Here, we report on the systematic study of the effect of the angle of incidence of sunlight on the performance of such structures. We also conduct a parametric study of a sinusoidal grating and demonstrate that light intensity in the active region averaged over a range of input angles from 0° to 80° can be enhanced by more than 3 times compared to the bare device. Such a broadband light-trapping nanostructure can increase the total daily energy production of a fixed (non-tracking) device by over 60%, compared to a reference device with an anti-reflection coating.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
    [CrossRef]
  2. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974).
    [CrossRef]
  3. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
    [CrossRef]
  4. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984).
    [CrossRef]
  5. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982).
    [CrossRef]
  6. P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
    [CrossRef]
  7. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18(S2Suppl 2), A139–A146 (2010).
    [CrossRef] [PubMed]
  8. S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
    [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  11. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
    [CrossRef] [PubMed]
  12. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18(5), 4260–4274 (2010).
    [CrossRef] [PubMed]
  13. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  14. Z. F. Yu, A. Raman, and S. H. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process.105(2), 329–339 (2011).
    [CrossRef]
  15. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  16. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010).
    [CrossRef] [PubMed]
  17. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express20(2), 1849–1855 (2012).
    [CrossRef] [PubMed]
  18. K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102(1), 013102 (2007).
    [CrossRef]
  19. L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).
  20. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  21. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express17(11), 8871–8878 (2009).
    [CrossRef] [PubMed]
  22. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
    [CrossRef]
  23. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004).
    [CrossRef]
  24. A. Raman, Z. F. Yu, and S. H. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

Z. F. Yu, A. Raman, and S. H. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process.105(2), 329–339 (2011).
[CrossRef]

A. Raman, Z. F. Yu, and S. H. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

2010 (6)

2009 (1)

2008 (2)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

2007 (3)

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102(1), 013102 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

2004 (2)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

1995 (1)

1987 (1)

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

1984 (2)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984).
[CrossRef]

1982 (1)

1974 (1)

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974).
[CrossRef]

Agrawal, M.

Ahn, S. H.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

Andreani, L. C.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Bermel, P.

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

Campbell, P.

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102(1), 013102 (2007).
[CrossRef]

Chang, J. Y.

Chutinan, A.

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Fan, S. H.

Gjessing, J.

Green, M.

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984).
[CrossRef]

Guo, L. J.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

Heine, C.

Hoppe, H.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Huang, C. F.

Joannopoulos, J. D.

Kherani, N. P.

Kimerling, L. C.

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Lee, Y. C.

Liscidini, M.

Luo, C.

Mallick, S. B.

Marstein, E. S.

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Menon, R.

Morf, R. H.

Nagel, J. R.

Peumans, P.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Raman, A.

Redfield, D.

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974).
[CrossRef]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Scarpulla, M. A.

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Sudbø, A.

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

Turpke, T.

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Wang, P.

Wu, M. L.

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982).
[CrossRef]

Yu, Z. F.

Zanotto, S.

Zeng, L.

Zukotynski, S.

Adv. Mater. (Deerfield Beach Fla.) (1)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Z. F. Yu, A. Raman, and S. H. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process.105(2), 329–339 (2011).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984).
[CrossRef]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984).
[CrossRef]

J. Appl. Phys. (3)

S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102(1), 013102 (2007).
[CrossRef]

P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987).
[CrossRef]

J. Mater. Res. (1)

H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (10)

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express17(11), 8871–8878 (2009).
[CrossRef] [PubMed]

S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18(5), 4260–4274 (2010).
[CrossRef] [PubMed]

J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010).
[CrossRef] [PubMed]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18(S2Suppl 2), A139–A146 (2010).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

A. Raman, Z. F. Yu, and S. H. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011).
[CrossRef] [PubMed]

P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express20(2), 1849–1855 (2012).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004).
[CrossRef]

Other (1)

L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Effect of oblique incidence on (A) square-grating and (B) sinusoidal-grating scattering structures atop an ultra-thin active device layer. Fθ and Jθ refer to light-intensity and short-circuit current-density enhancements with respect to a device that does not contain the scattering and cladding layers, respectively. (C) and (D) show the enhancement spectra as a function of incident angle for the square and sinusoidal gratings, respectively. Note the sharp peaks, which indicate specific guided modes that are excited within the active layer.

Fig. 2
Fig. 2

Effect of grating period. (A) Overall enhancement factors as a function of grating period, Λ. (B) Enhancement factor at a given incident angle, Fθ as a function of Λ. (C)-(F) Spectra of enhancement factor, Fθ for θ = 0°, 20°, 40° and 60°, respectively.

Fig. 3
Fig. 3

Effect of cladding-layer thickness, tc. (A) Overall enhancement factors as a function of tc. (B) Enhancement factor, Fθ as a function of tc. (C)-(F) Spectra of enhancement factor, Fθ for θ = 0°, 20°, 40° and 60°, respectively.

Fig. 4
Fig. 4

Effect of scattering-layer thickness, ts. (A) Overall enhancement factors as a function of ts. (B) Enhancement factor, Fθ as a function of ts. (C)-(F) Spectra of enhancement factor, Fθ for θ = 0°, 20°, 40° and 60°, respectively.

Fig. 5
Fig. 5

Daily energy output per unit area in the non-tracking configuration for a bare device (left), a device with an anti-reflection coating (ARC) (center), and a device with the nanophotonic structure (right).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ¯ λ ( x,z,θ )= λ I( λ,x,z,θ )dλ
S( θ )= 1 Λ active I ¯ λ ( x,z,θ )dxdz
F θ = S( θ ) S ref ( θ ) F= 0 θ max F θ dθ,
j sc ( θ )= q t a Λ active ( λ Φ( λ,x,z,θ )IQE( λ )dλ )dxdz , Φ( λ,x,z,θ )= I( λ,x,z,θ ) hc/λ ,
J θ = j sc ( θ ) j sc, ref ( θ ) J= 0 θ max J θ dθ,
v oc = E g +kTln( j sc 4 π 2 h 3 c 2 q( n 2 +1 ) E g 2 kT ) q ,
p(θ)= j sc (θ) v oc (θ)FF,
E= 90 o 90 o p( θ ) dθ

Metrics