Abstract

Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
    [CrossRef]
  2. K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
    [CrossRef]
  3. H. Deckman, C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical-absorption in textured semiconductor-films,” Opt. Lett.8, 491–493 (1983).
    [CrossRef] [PubMed]
  4. P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
    [CrossRef]
  5. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34, 2476–2482 (1995).
    [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  7. L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
    [CrossRef]
  8. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  9. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
    [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
    [CrossRef] [PubMed]
  11. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
    [CrossRef]
  12. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
    [CrossRef] [PubMed]
  13. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
    [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  15. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
    [CrossRef]
  16. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
    [CrossRef]
  17. L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
    [CrossRef]
  18. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
    [CrossRef]
  19. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
    [CrossRef]
  23. A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)
  24. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
    [CrossRef]
  25. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
    [CrossRef]
  26. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
    [CrossRef]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  28. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
    [CrossRef]
  29. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  30. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
    [CrossRef] [PubMed]
  31. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  32. M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
    [CrossRef]
  33. E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
    [CrossRef]

2011 (2)

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

2010 (11)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

2009 (3)

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

2008 (1)

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

2004 (2)

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

2003 (1)

2002 (1)

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

2000 (1)

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

1995 (1)

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

1983 (2)

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

H. Deckman, C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical-absorption in textured semiconductor-films,” Opt. Lett.8, 491–493 (1983).
[CrossRef] [PubMed]

Alsema, E. A.

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Bauhuis, G. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Bloch, A.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Busch, K.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

Chang, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Chang, H.-C.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Chang, Y.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, X.

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Deckman, H.

Deubel1, M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Dhar, N.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Drouard, E.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Dutta, A. K.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Esteban, R.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

Fave, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Fu, P.-H.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Garcia-Caurel, E.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Gomard, G.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

Greffet, J. J.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

Han, K.-S.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

Haverkamp, E. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

He, J.-H.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Heine, C.

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Hsu, S.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Hu, L.

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

Huijben, J. C. C. M.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Kaminski, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Kim, E.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Lai, K.-Y.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Laroche, M.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Lee, H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Lemiti, M.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Letartre, X.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Lin, C.-A.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Lin, G.-J.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Meng, X.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Mizuno, G.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Morf, R. H.

Mulder, P.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Olah, R.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J. H.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Pereira, S.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

Rau, U.

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Roxlo, C.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Schermer, J. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Seassal, C.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Sengupta, R.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Sheng, P.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Shin, J.-H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Soukoulis, C. M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Stepleman, R.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Suh, W.

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

Taretto, K.

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

von Freymann1, G.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Whitesides, G. M.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Wijewarnasuriya, P.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Xia, Y.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Yablonovitch, E.

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yeh, L.-K.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Yoon, W.-Y.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yu, P.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Adv. Energy Mater. (1)

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Adv. Mater. (1)

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

J. Appl. Phys. (3)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Nature (1)

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Prog. Photovoltaics (2)

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Other (5)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Light trapping structure with an active film under nonabsorptive pyramids. From top to bottom: the nonabsorptive pyramids (transparent light blue), the active film (blue, 0.3μm thick), the SiO2, layer (green, 0.4μm thick) and the gold reflector (golden). The pyramids have lattice constant a = 3μm and pyramid height h = 6μm. (b) Light-trapping structure with active rods embedded in nonabsorptive pyramids. The rods have the height hrod = 6.3μm, radius rrod = 0.4μm and effective thickness deff = 0.3μm. (c) The absorption spectra of the two light-trapping structures illustrated in (a) and (b) along with the absorption spectrum of an optimized multilayer structure. The multilayer structure consists of, from top to bottom, a 1.5μm-thick SiO2 layer, a 0.3μm-thick active layer, a 20nm-thick SiO2 layer and a gold reflector.

Fig. 2
Fig. 2

Absorption spectra of active rod structures with nonabsorptive pyramids, as shown in Fig. 1(b), and without the nonabsorptive pyramids. The inset shows an illustration of structure with the active rods in air, without any nonabsorptive pyramids

Fig. 3
Fig. 3

Reflectance spectra of the bottomless pyramid structure and the infinitely long rod structure. The bottomless pyramid structure has the same parameters as the structure shown in Fig. 1(b) except the nonabsorptive pyramids and the active rods extend to infinity in the −z direction. The infinitely long rod structure is a bottomless pyramid structure for which the nonabsorptive pyramids are replaced by air.

Fig. 4
Fig. 4

(a) Absorption spectra of the light-trapping structures shown in Fig. 1(a) (red curve with circles) and 1(b) (blue curve with squares), along with the spectral distribution of the energy stored in a pyramid structure that doesn’t have any active material. The stored energy is normalized by the electromagnetic energy carried by the incident plane wave in the same volume of free space. (b) Absorption spectrum of the light-trapping structures shown as the inset of Fig. 2, along with the spectral distribution of normalized energy stored in that rod structure when the rod is lossless.

Fig. 5
Fig. 5

Absorption spectra of a low loss pyramid structure (red curve with circles) and a structure with low loss absorbing rods embedded in nonabsorptive pyramids (blue curve with squares), along with the spectral distribution of the energy stored in a pyramid structure that doesn’t have any active material. The permittivity of the active material in the low loss pyramid structure is 12.25 + 0.01i; the permittivity of the active material in the low loss rod structure is 12.25 + 0.1i. Originally the permittivity of the active material is around 12.2 + 0.65i.

Fig. 6
Fig. 6

Electric-field energy density distributions along two cross sections of a pyramid when the wavelength of the light is 4.510μm. (a) The entire pyramid is lossless; (b) The entire pyramids consists of a low loss material with εa = 12.25 + 0.01i; (c) The structure has a low loss active rod with εa = 12.25 + 0.1i embedded in each otherwise transparent pyramid; (d) The structure has an active rod with εa = 12.2 + 0.65i embedded in each otherwise transparent; (e) The structure has an active film with εa = 12.2 + 0.65i under transparent pyramids. The maximum value for the electric-field energy density shown in each figure (dark red region) is (a) 3.7 × 10−9J/m3; (b) 2.4 × 10−9J/m3; (c) 2.3 × 10−9J/m3; (d) 6.0 × 10−10J/m3; (e) 5.5 × 10−10J/m3. The electric-field of the incident plane wave has a magnitude of 1V/m.

Fig. 7
Fig. 7

Electric-field energy density distributions for the same five cases as Fig. 6 when the wavelength of the light is 4.488μm. The maximum value for the electric-field energy density in each figure is (a) 2.3 × 10−8J/m3; (b) 6.1 × 10−9J/m3; (c) 4.3 × 10−9J/m3; (d) 6.8 × 10−10J/m3; (e) 6.4 × 10−10J/m3.

Fig. 8
Fig. 8

Average absorptance for the wavelength range from 1μm to 5μm vs. the height of the active rods in the nonabsorptive pyramids. The red line with circles shows the average absorptance of active rods within nonabsorptive pyramids having np = 3.5. The blue line with squares shows active rods in air. The six insets show the cross section illustration of structures with or without the nonabsorptive pyramids, for values of hrod = 0.3μm, 3μm or 6.3μm All of the structures have the same effective thickness deff = 0.3μm. Note that when hrod = 0.3μm, the rod becomes a laterally continuous film.

Fig. 9
Fig. 9

Average absorptance for the wavelength range from 1μm to 5μm vs. the refractive index of the nonabsorptive pyramids. The red curve with circles represents the absorption in the structure having a 0.3μm-thick film; the blue curve with squares represents the absorption in the structure having active rods with hrod = 3μm and deff = 0.3μm.

Fig. 10
Fig. 10

Average absorptance for incident light in the wavelength range from 1μm to 5μm under oblique incidence angles. Four structures are studied that have: the 0.3μm-thick active film under the nonabsorptive pyramids with np = 3.5 (black); the active rods with hrod = 3μm and deff = 0.3μm in the nonabsorptive pyramids with np = 3.5 (magenta), or with np = 1.5 (blue); and the same rods in air (red). The circles represent s polarization and the crosses represent p polarization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε a = ε + m ω p , m 2 ω 0 , m 2 ω 2 i ω γ m .
A ( ω ) = γ i γ e , 0 ( ω ω 0 ) 2 + ( γ i + m γ e , m ) 2 / 4 .
Energy γ e , 0 ( ω ω 0 ) 2 + ( m γ e , m ) 2 / 4 .

Metrics