Abstract

The integration of a plasmonic lamellar grating in a heterostructure organic solar cell as a light trapping mechanism is investigated with numerical Finite Elements simulations. A global optimization of all the geometric parameters has been performed. The obtained wide-band enhancement in optical absorption is correlated with both the propagating and the localized plasmonic modes of the structure, which have been identified and characterized in detail.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004).
    [CrossRef]
  2. T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
    [CrossRef]
  3. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
    [CrossRef]
  4. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008).
    [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  6. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012).
    [CrossRef] [PubMed]
  7. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  8. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express16(8), 5385–5396 (2008).
    [CrossRef] [PubMed]
  9. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
    [CrossRef] [PubMed]
  10. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
    [CrossRef]
  12. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
    [CrossRef]
  13. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express20(S1), A39–A50 (2012).
    [CrossRef] [PubMed]
  14. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
    [CrossRef]
  15. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011).
    [CrossRef] [PubMed]
  16. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
    [CrossRef]
  17. S. A. Maier, Plasmonics Fundamentals and Applications (Springer 2007).
  18. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
    [CrossRef] [PubMed]
  19. M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
    [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  21. Comsol Multiphysics, http://www.comsol.com .
  22. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley & Sons, 2002).
  23. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
    [CrossRef] [PubMed]
  24. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16(21), 16529–16537 (2008).
    [CrossRef] [PubMed]
  25. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
    [CrossRef]

2012

2011

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

2010

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

2009

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

2008

M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express16(8), 5385–5396 (2008).
[CrossRef] [PubMed]

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16(21), 16529–16537 (2008).
[CrossRef] [PubMed]

2007

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

2006

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

2004

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Abass, A.

Agrawal, M.

Alù, A.

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

Bienstman, P.

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16(21), 16529–16537 (2008).
[CrossRef] [PubMed]

Chandran, A.

Cingolani, R.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

D’ Agostino, S.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

della Sala, F.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Duan, Y.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Dunbar, R. B.

Fan, S.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Gigli, G.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

Guo, L. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Hoppe, H.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Kang, M. G.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

Kietzke, T.

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

Le, K. Q.

Lee, J. Y.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Leo, K.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

Li, J.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Luo, X.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

Maennig, B.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

Maes, B.

Mariano, F.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Mazzeo, M.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Melcarne, G.

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Min, C.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Park, H. J.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express16(8), 5385–5396 (2008).
[CrossRef] [PubMed]

Pfadler, T.

Pfeiffer, M.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Ruseckas, A.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Samuel, I. D. W.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Schmidt-Mende, L.

Shaw, P. E.

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Shen, H.

Søndergaard, T.

Spinelli, P.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Tsakalakos, L.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Walzer, K.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

White, J. S.

Xu, T.

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
[CrossRef]

M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010).
[CrossRef] [PubMed]

Adv. Optoelectron.

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

Appl. Phys. Lett.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008).
[CrossRef]

Chem. Rev.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007).
[CrossRef] [PubMed]

J. Mater. Res.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004).
[CrossRef]

Mater. Sci. Eng. Rep.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008).
[CrossRef]

Nano Lett.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Comsol Multiphysics, http://www.comsol.com .

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley & Sons, 2002).

S. A. Maier, Plasmonics Fundamentals and Applications (Springer 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

2D FEM model cross section (a) and 3D picture (b) of the plasmonic OSC.

Fig. 2
Fig. 2

(a) Absorptance within active layers CuPc and C60 (blue solid line), absorptance in metal parts (black solid line) and reflectance (red solid line) of the optimal cell compared to the same quantities calculated for the optimal cell without grating (dashed lines); (b) Absorptance enhancement (Q/Q0) in the active layers for TM (blue) and TE (red) polarizations; (c) Real and Imaginary parts of relative dielectric constants of CuPc (black) and of C60 (green).

Fig. 3
Fig. 3

TM Modes dispersion for flat configurations with (black) and without (red) 10 nm continuous Ag film between the ITO layer and the HTL. The blue dashed line is the light line in glass.

Fig. 4
Fig. 4

Electric field profiles of modes at representative frequencies. (a) back electrode SPP modes with and without 10 nm Ag film; (b) TM0 ITO waveguide modes with and without 10 nm Ag film; (c) LR-SPP mode; (d) SR-SPP mode.

Fig. 5
Fig. 5

(a) Single strip normalized absorption cross section as a function of strip width and frequency. Black solid lines mark single strip resonance positions according to Eq. (2) with ø ≈1.2 rad; the vertical dashed line mark the optimal strip width configuration as found in Section 3; (b), (c): Scattered electric field norms in the configurations marked with circles in the map; their strip widths are respectively 140 and 66 nm. Color scales in (b), (c) are normalized to the impinging wave electric field norm.

Fig. 6
Fig. 6

TM Absorption enhancement within the organic layers with respect to the optimal cell without any grating as a function of crystal wave vector G = 2π/d and angular frequency ω. Black lines are the back SPP coupling dispersions according to Eq. (3) for m = 1, 2, while the white line represents the single strip resonance, i.e. the zero of Eq. (2) for m = 1. The optimal grating period is marked with the dashed black line. Empty and filled circles mark configurations whose electric field norm is reported respectively in Fig. 8(a) and 8(b); the “+” marks the peak of absorption enhancement at λ = 780 nm.

Fig. 7
Fig. 7

TM Absorptance in back electrode (a) and in the metal strips (b) as a function of crystal wave vector G = 2π/d and angular frequency ω. Strip-width-to-period ratio and grating thickness are kept fixed to 25% and 10 nm respectively. In both maps the black lines are the back SPP coupling dispersions according to Eq. (3) for m = 1, 2, while the white line represents the single strip resonance, i.e. the zero of Eq. (2) for m = 1. The vertical black dotted line marks the optimal grating period (380 nm). Filled and empty circles mark the configurations whose electric field norm is reported in Fig. 8(a) and 8(b).

Fig. 8
Fig. 8

Electric field norm for configurations marked with an empty circle (a) and with a filled circle (b) in Fig. 6 and 7 and corresponding respectively to the single strip resonance and to the SPP at back electrode coupling. Frequencies are respectively ω = 2.32∙1015 Hz and 2.63∙1015 Hz. Geometrical parameters are those of the optimal configuration. Colorscale is normalized to the impinging wave electric field norm.

Fig. 9
Fig. 9

(a) TE absorption enhancement within the organic layers as a function of G = 2π/d and ω; white dashed lines and black lines are Wood’s anomalies and ITO TE0 waveguide modes respectively; the black dashed line marks the optimal grating period; (b) scattered field norm in the configuration marked with a square in the map.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T= Q(λ)F(λ)dλ F(λ)dλ
w k SRSPP (ω)=mπ+ϕ
mG=m 2π d = k SPP (ω)m=±1,±2,±3,...
G= ωRe(N) mc m=±1,±2,±3,...

Metrics