Abstract

Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Xu, Z. Liu, J. Ma, B. Liu, S.-T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A. K. Y. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express13(19), 7380–7385 (2005).
    [CrossRef] [PubMed]
  2. G. J. Exarhos and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films515(18), 7025–7052 (2007).
    [CrossRef]
  3. H. Li, N. Wang, and X. Liu, “Optical and electrical properties of vanadium doped Indium oxide thin films,” Opt. Express16(1), 194–199 (2008).
    [CrossRef] [PubMed]
  4. F. Yi, F. Ou, B. Liu, Y. Huang, S.-T. Ho, Y. Wang, J. Liu, T. J. Marks, S. Huang, J. Luo, A. K.-Y. Jen, R. Dinu, and D. Jin, “Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes,” Opt. Express18(7), 6779–6796 (2010).
    [CrossRef] [PubMed]
  5. C. K. Choi, K. D. Kihm, and A. E. English, “Optoelectric biosensor using indium-tin-oxide electrodes,” Opt. Lett.32(11), 1405–1407 (2007).
    [CrossRef] [PubMed]
  6. Ö. Şenlik, H. Y. Cheong, and T. Yoshie, “Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104,” Opt. Express19(23), 23469–23474 (2011).
    [CrossRef] [PubMed]
  7. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
    [CrossRef] [PubMed]
  8. S. H. Lee and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express19(22), 21803–21808 (2011).
    [CrossRef] [PubMed]
  9. W.-Y. Chang, H.-J. Lin, and J.-S. Chang, “Optical panel with full multitouch using patterned indium tin oxide,” Opt. Lett.36(6), 894–896 (2011).
    [CrossRef] [PubMed]
  10. Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-ohmic contact structure on a GaN-based light emitting diode,” Opt. Express19(15), 14662–14670 (2011).
    [CrossRef] [PubMed]
  11. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
    [CrossRef]
  12. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
    [CrossRef]
  13. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
    [CrossRef]
  14. C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
    [CrossRef] [PubMed]
  15. C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
    [CrossRef]
  16. S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
    [CrossRef] [PubMed]
  17. Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
    [CrossRef]
  18. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
    [CrossRef]
  19. K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
    [CrossRef]
  20. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16(19), 15123–15129 (2008).
    [CrossRef] [PubMed]
  21. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express15(11), 6552–6560 (2007).
    [CrossRef] [PubMed]
  22. S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B106(50), 12986–12992 (2002).
    [CrossRef]
  23. C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
    [CrossRef]
  24. C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B26(9), A58–A65 (2009).
    [CrossRef]
  25. X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
    [CrossRef]
  26. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
    [CrossRef]
  27. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006).
    [CrossRef] [PubMed]
  28. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
    [CrossRef]
  29. N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B64(15), 155106 (2001).
    [CrossRef]
  30. C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
    [CrossRef] [PubMed]
  31. S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
    [CrossRef]
  32. W. J. Heward and D. J. Swenson, “Phase equilibria in the pseudo-binary In2O3-SnO2 system,” J. Mater. Sci.42(17), 7135–7140 (2007).
    [CrossRef]
  33. X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
    [CrossRef]
  34. Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
    [CrossRef]
  35. Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
    [CrossRef]
  36. A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin Solid Films478(1-2), 299–304 (2005).
    [CrossRef]
  37. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  38. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
    [CrossRef]
  39. J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
    [CrossRef] [PubMed]

2011 (8)

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

W.-Y. Chang, H.-J. Lin, and J.-S. Chang, “Optical panel with full multitouch using patterned indium tin oxide,” Opt. Lett.36(6), 894–896 (2011).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
[CrossRef] [PubMed]

Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-ohmic contact structure on a GaN-based light emitting diode,” Opt. Express19(15), 14662–14670 (2011).
[CrossRef] [PubMed]

S. H. Lee and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express19(22), 21803–21808 (2011).
[CrossRef] [PubMed]

Ö. Şenlik, H. Y. Cheong, and T. Yoshie, “Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104,” Opt. Express19(23), 23469–23474 (2011).
[CrossRef] [PubMed]

2010 (3)

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

F. Yi, F. Ou, B. Liu, Y. Huang, S.-T. Ho, Y. Wang, J. Liu, T. J. Marks, S. Huang, J. Luo, A. K.-Y. Jen, R. Dinu, and D. Jin, “Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes,” Opt. Express18(7), 6779–6796 (2010).
[CrossRef] [PubMed]

2009 (4)

C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B26(9), A58–A65 (2009).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
[CrossRef]

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

2008 (4)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

H. Li, N. Wang, and X. Liu, “Optical and electrical properties of vanadium doped Indium oxide thin films,” Opt. Express16(1), 194–199 (2008).
[CrossRef] [PubMed]

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

2007 (6)

C. K. Choi, K. D. Kihm, and A. E. English, “Optoelectric biosensor using indium-tin-oxide electrodes,” Opt. Lett.32(11), 1405–1407 (2007).
[CrossRef] [PubMed]

J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express15(11), 6552–6560 (2007).
[CrossRef] [PubMed]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
[CrossRef]

W. J. Heward and D. J. Swenson, “Phase equilibria in the pseudo-binary In2O3-SnO2 system,” J. Mater. Sci.42(17), 7135–7140 (2007).
[CrossRef]

G. J. Exarhos and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films515(18), 7025–7052 (2007).
[CrossRef]

2006 (1)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

2005 (3)

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin Solid Films478(1-2), 299–304 (2005).
[CrossRef]

G. Xu, Z. Liu, J. Ma, B. Liu, S.-T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A. K. Y. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

2003 (1)

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
[CrossRef]

2002 (3)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B106(50), 12986–12992 (2002).
[CrossRef]

2001 (2)

Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B64(15), 155106 (2001).
[CrossRef]

1997 (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

1983 (1)

Aoshima, Y.

S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
[CrossRef]

Bauer, T.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Baxter, J. B.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B106(50), 12986–12992 (2002).
[CrossRef]

Chang, C. H.

C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
[CrossRef]

Chang, C.-H.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chang, C.-S.

Chang, J.-S.

Chang, W.-L.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

Chang, W.-Y.

Chang, Y.-C.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chen, C.-W.

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B26(9), A58–A65 (2009).
[CrossRef]

Chen, F.-R.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Chen, R.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Chen, T.-Y.

Chen, X. D.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Chen, Y. Q.

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Cheong, H. Y.

Chhajed, S.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chiu, S.-P.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Cho, J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Choi, C. K.

Chung, H.-F.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Chung, P.-K.

Cooke, D. G.

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Crawford, M. H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Dai, Z. R.

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
[CrossRef]

Darmo, J.

Dinu, R.

English, A. E.

Exarhos, G. J.

G. J. Exarhos and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films515(18), 7025–7052 (2007).
[CrossRef]

Feng, S. L.

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Franzen, S.

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B106(50), 12986–12992 (2002).
[CrossRef]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Gao, J.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Guo, H. C.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Ha, N. Y.

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Hendry, E.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

Heward, W. J.

W. J. Heward and D. J. Swenson, “Phase equilibria in the pseudo-binary In2O3-SnO2 system,” J. Mater. Sci.42(17), 7135–7140 (2007).
[CrossRef]

Ho, S.-T.

Hou, J. G.

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Hsu, C.-S.

Hsu, M.-H.

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

Hsu, S.-H.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Hsu, W.-C.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

Huang, C.-C.

Huang, J. Y.

Huang, S.

Huang, Y.

Isaac, T. H.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

Jen, A. K. Y.

Jen, A. K.-Y.

Jepsen, P. U.

Jewell, S. A.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

Jiang, J.

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Jiang, L.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Jin, D.

Kadoya, Y.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Kai, J.-J.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Kihm, K. D.

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Kim, J. K.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Kitagawa, J.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Kolb, J. S.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Kröll, J.

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Lee, S. H.

Leem, J. W.

Li, D. H.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Li, H.

Lin, H.-J.

Lin, J.-J.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Lin, S.-H.

Lin, Y.-C.

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Lin, Y.-H.

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

Liou, J.-K.

Liu, B.

Liu, J.

Liu, W.-C.

Liu, X.

H. Li, N. Wang, and X. Liu, “Optical and electrical properties of vanadium doped Indium oxide thin films,” Opt. Express16(1), 194–199 (2008).
[CrossRef] [PubMed]

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Liu, Y.-J.

Liu, Z.

Löffler, T.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Luo, J.

Ma, J.

Ma, X. C.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Mahdjoub, A.

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin Solid Films478(1-2), 299–304 (2005).
[CrossRef]

Marks, T. J.

Meng, G. W.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Mohler, E.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Nagayama, D.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Ohkubo, T.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Ou, F.

Pan, C.-L.

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B26(9), A58–A65 (2009).
[CrossRef]

Pan, Z. W.

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Peng, X. S.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Pernisz, U. C.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Roskos, H. G.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

Sambles, J. R.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

Satoh, R.

S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
[CrossRef]

Sawada, F.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Schmuttenmaer, C. A.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

Schubert, E. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Schubert, M. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Senlik, Ö.

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Shieh, J.-M.

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

Smith, N. V.

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B64(15), 155106 (2001).
[CrossRef]

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

Song, Z. T.

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

Southwell, W. H.

Sun, H. D.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Sun, W.-C.

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

Sun, X. W.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Swenson, D. J.

W. J. Heward and D. J. Swenson, “Phase equilibria in the pseudo-binary In2O3-SnO2 system,” J. Mater. Sci.42(17), 7135–7140 (2007).
[CrossRef]

Takaki, S.

S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
[CrossRef]

Takase, K.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Tan, S. T.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Tang, T.-T.

Tsai, T.-Y.

Tseng, P.-C.

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

Unterrainer, K.

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Wan, Q.

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

Wang, B.

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Wang, L.

Wang, N.

Wang, T. H.

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

Wang, X. F.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Wang, Y.

Wang, Y. W.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Wang, Z. L.

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
[CrossRef]

Wu, T.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

Xiong, Q. H.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Xu, G.

Yang, C. S.

C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
[CrossRef]

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Yang, P.

Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

Ye, J. C.

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

Ye, J. D.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Yen, S.-T.

Yi, F.

Yong, A. M.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Yoshie, T.

Yu, J. S.

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Yu, P.

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Zhang, J.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Zhang, L. D.

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

Zhang, X. H.

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

Zhou, X.-D.

G. J. Exarhos and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films515(18), 7025–7052 (2007).
[CrossRef]

Zhu, P.

Zighed, L.

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin Solid Films478(1-2), 299–304 (2005).
[CrossRef]

Adv. Funct. Mater. (1)

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater.13(1), 9–24 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.)20(4), 801–804 (2008).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett.94(5), 051114 (2009).
[CrossRef]

Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, “Single-crystalline tin-ddoped indium oxide whiskers: Synthesis and characterization,” Appl. Phys. Lett.85(20), 4759–4761 (2004).
[CrossRef]

Chem. Mater. (1)

X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers,” Chem. Mater.14(11), 4490–4493 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron.46(12), 1746–1754 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc.123(13), 3165–3166 (2001).
[CrossRef]

J. Appl. Phys. (2)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002).
[CrossRef]

X. H. Zhang, H. C. Guo, A. M. Yong, J. D. Ye, S. T. Tan, and X. W. Sun, “Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.107(3), 033101 (2010).
[CrossRef]

J. Mater. Sci. (1)

W. J. Heward and D. J. Swenson, “Phase equilibria in the pseudo-binary In2O3-SnO2 system,” J. Mater. Sci.42(17), 7135–7140 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B110(50), 25229–25239 (2006).
[CrossRef] [PubMed]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B106(50), 12986–12992 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” J. Phys. D Appl. Phys.37(23), 3319–3322 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Takaki, Y. Aoshima, and R. Satoh, “Growth mechanism of indium tin oxide whiskers prepared by sputtering,” Jpn. J. Appl. Phys.46(6A), 3537–3544 (2007).
[CrossRef]

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys.44(32), L1011–L1014 (2005).
[CrossRef]

Nanotechnology (3)

S.-P. Chiu, H.-F. Chung, Y.-H. Lin, J.-J. Kai, F.-R. Chen, and J.-J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K,” Nanotechnology20(10), 105203 (2009).
[CrossRef] [PubMed]

C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu, and Y.-C. Chang, “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology22(9), 095201 (2011).
[CrossRef] [PubMed]

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology22(19), 195706 (2011).
[CrossRef] [PubMed]

New J. Phys. (1)

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tunable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008).
[CrossRef]

Opt. Express (10)

G. Xu, Z. Liu, J. Ma, B. Liu, S.-T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A. K. Y. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

F. Yi, F. Ou, B. Liu, Y. Huang, S.-T. Ho, Y. Wang, J. Liu, T. J. Marks, S. Huang, J. Luo, A. K.-Y. Jen, R. Dinu, and D. Jin, “Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes,” Opt. Express18(7), 6779–6796 (2010).
[CrossRef] [PubMed]

J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express15(11), 6552–6560 (2007).
[CrossRef] [PubMed]

H. Li, N. Wang, and X. Liu, “Optical and electrical properties of vanadium doped Indium oxide thin films,” Opt. Express16(1), 194–199 (2008).
[CrossRef] [PubMed]

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16(19), 15123–15129 (2008).
[CrossRef] [PubMed]

C.-H. Chang, M.-H. Hsu, P.-C. Tseng, P. Yu, W.-L. Chang, W.-C. Sun, and W.-C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
[CrossRef] [PubMed]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
[CrossRef] [PubMed]

Y.-J. Liu, C.-C. Huang, T.-Y. Chen, C.-S. Hsu, J.-K. Liou, T.-Y. Tsai, and W.-C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-ohmic contact structure on a GaN-based light emitting diode,” Opt. Express19(15), 14662–14670 (2011).
[CrossRef] [PubMed]

S. H. Lee and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Opt. Express19(22), 21803–21808 (2011).
[CrossRef] [PubMed]

Ö. Şenlik, H. Y. Cheong, and T. Yoshie, “Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104,” Opt. Express19(23), 23469–23474 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B64(15), 155106 (2001).
[CrossRef]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Thin Solid Films (2)

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin Solid Films478(1-2), 299–304 (2005).
[CrossRef]

G. J. Exarhos and X.-D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films515(18), 7025–7052 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The scanning electron microscopy images of the ITO nanowhiskers fabricated with different deposition times: (a) 16.5 minutes (b) 22 minutes. The corresponding cross-sectional images in (c) and (d) show an estimated height of 418 nm and 698 nm, respectively.

Fig. 2
Fig. 2

The reflectance spectra of the bare silicon wafer (black circles) and ITO nanowhiskers with thickness of 418 nm (blue triangles) and 698 nm (red cubes) in the wavelength range of 200~2600 nm.

Fig. 3
Fig. 3

The TEM characterizations of ITO Nano-whiskers. (a) The TEM images reveal the structures of trunks and branches. (b) The high-resolution image shows the lattice pattern, corresponding to a constant of 5.18Å, and the XRD diffraction pattern of the corresponding crystalline structure (inset). (c) The line-scan profile in an EDX analysis of a ITO trunk. The composition profiles of In and O show significant variation from the edge to center, while the Sn composition show little variation.

Fig. 4
Fig. 4

X-ray diffraction patterns for ITO nanowhiskers deposited on silicon. The blue solid line and red dashed line correspond to ITO nanowhiskers with thicknesses of 418 nm and 698 nm, respectively.

Fig. 5
Fig. 5

Sketch of the graded-refractive-index structure of ITO nanowhiskers.

Fig. 6
Fig. 6

(a) The real parts of the refractive indices of ITO nanowhiskers with thickness of 418 nm (blue circles) and 698 nm (red triangles). (b) The power absorption of ITO nanowhiskers with thickness of 418 nm (blue circles) and 698 nm (red triangles). The imaginary parts of the refractive indices of ITO nanowhiskers with thickness of 418 nm (blue circles) and 698 nm (red triangles) are shown in the inset.

Fig. 7
Fig. 7

(a) The real parts of conductivities of ITO nanowhiskers with thickness of 418 nm (blue circles) and 698 nm (red triangles). (b) The imaginary parts of the conductivities of ITO nanowhiskers with thickness of 418 nm (blue circles) and 698 nm (red triangles). The blue solid lines and red dashed lines are the corresponding fitting results based on the Drude-Smith model.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f ITO (z)=1 1 1+ e b( z z 0 ) ,
E Sub * ( ω )= E 0 * t Air,Sub * t Sub,Air * ×exp[ i(ω/c) n Air d ]exp[ i(ω/c) n Sub * L ],
E ITO * ( ω )= E 0 * t Air,1 * t 12 * t 23 * ... t (m-1)m * ... t N,Sub * ×exp[ i(ω/c)( n 1 * + n 2 * + n 3 * ...+ n m-1 * + n m * +... n N * )(d/N) ] × t Sub,Air * ×exp[ i(ω/c) n Sub * L ],
T Theo * ( ω )= E ITO * ( ω )/ E Sub * ( ω )= t Air,1 * t 12 * t 23 * ... t (m-1)m * ... t N,Sub * ×exp[ i(ω/c)( d/N )( n 1 * + n 2 * + n 3 * +...+ n (m-1) * + n m * +...+ n N * N n Air * ) ]/ t Air,Sub * .
( n N * ) 2 = ε * ( ω )= ε +i σ * ( ω ) ω ε 0 ,
σ * ( ω )= ε 0 ω p 2 τ 1iωτ ( 1+ γ 1iωτ ),
Re{ σ }= ε 0 ω p 2 τ[ ( 1+γ )+ ω 2 τ 2 ( 1γ ) ] ( 1+ ω 2 τ 2 ) 2 ,
Im{ σ }= ε 0 ω ω p 2 τ 2 ( 1+2γ+ ω 2 τ 2 ) ( 1+ ω 2 τ 2 ) 2 .

Metrics