Abstract

We fabricated the parabola-shaped subwavelength grating (SWG) nanostructures on indium tin oxide (ITO) films/Si and glass substrates using laser interference lithography, dry etching, and subsequent re-sputtering processes. The efficiency enhancement of an a-Si:H/μc-Si:H tandem thin film solar cell was demonstrated theoretically by applying the experimentally measured data of the fabricated samples to the simulation parameters. Their wetting behaviors and effective electrical properties as well as optical reflectance properties of ITO SWGs, together with theoretical prediction using a rigorous coupled-wave analysis method, were investigated. For the parabola-shaped ITO SWG/ITO film, the solar weighted reflectance (SWR) value was ~10.2% which was much lower than that (i.e., SWR~20%) of the conventional ITO film, maintaining the SWR values less than 19% up to a high incident angle of 70° over a wide wavelength range of 300-1100 nm. Also, the ITO SWG with a superhydrophilic surface property (i.e., water contact angle of 6.2°) exhibited an effective resistivity of 2.07 × 10−3 Ω-cm. For the a-Si:H/μc-Si:H tandem thin film solar cell structure incorporated with the parabola-shaped ITO SWG/ITO film as an antireflective electrode layer, the conversion efficiency (η) of 13.7% was theoretically obtained under AM1.5g illumination, indicating an increased efficiency by 1.4% compared to the device with the conventional ITO film (i.e., η = 12.3%).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
    [CrossRef]
  2. J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
    [CrossRef]
  3. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
    [CrossRef]
  4. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011).
    [CrossRef] [PubMed]
  5. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010).
    [CrossRef] [PubMed]
  6. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3Suppl 3), A308–A313 (2010).
    [CrossRef] [PubMed]
  7. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  8. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  9. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  10. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express19(1), 297–305 (2011).
    [CrossRef] [PubMed]
  11. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011).
    [CrossRef]
  12. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
    [CrossRef]
  13. S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
    [CrossRef]
  14. Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
    [CrossRef]
  15. S. Y. Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films518(21), S10–S13 (2010).
    [CrossRef]
  16. J. W. Leem and J. S. Yu, “Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells,” Phys. Status Solidi. A208(9), 2220–2225 (2011).
    [CrossRef]
  17. J. Yang and J. M. Kleijn, “Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate,” Biophys. J.76(1), 323–332 (1999).
    [CrossRef] [PubMed]
  18. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
    [CrossRef]
  19. R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem.28(8), 988–994 (1936).
    [CrossRef]
  20. C. H. Chang, M. H. Hsu, P. C. Tseng, P. Yu, W. L. Chang, W. C. Sun, and W. C. Hsu, “Enhanced angular characteristics of indium tin oxide nanowhisker-coated silicon solar cells,” Opt. Express19(S3Suppl 3), A219–A224 (2011).
    [CrossRef] [PubMed]
  21. C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
    [CrossRef] [PubMed]
  22. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
    [CrossRef]
  23. S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells87(1-4), 785–794 (2005).
    [CrossRef]
  24. S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
    [CrossRef]
  25. L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of disces of arbitrary shape,” Philips Res. Rep.13, 1–9 (1958).
  26. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  27. S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
    [CrossRef]
  28. NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra , Accessed 15 Jan. (2012).
  29. ATLAS User's Manual, Silvaco international, Feb (2012).
  30. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
    [CrossRef] [PubMed]
  31. S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
    [CrossRef]
  32. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
    [CrossRef]
  33. SOPRA, http://www.sopra-sa.com , Accessed 1 Dec. (2011).
  34. J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B29(3), 357–362 (2012).
    [CrossRef]
  35. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  36. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12(2), 333–339 (1995).
    [CrossRef]
  37. C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
    [CrossRef]

2012 (2)

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B29(3), 357–362 (2012).
[CrossRef]

2011 (6)

2010 (7)

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

S. Y. Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films518(21), S10–S13 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010).
[CrossRef] [PubMed]

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3Suppl 3), A308–A313 (2010).
[CrossRef] [PubMed]

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

2009 (2)

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

2008 (2)

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

2007 (3)

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells87(1-4), 785–794 (2005).
[CrossRef]

2000 (1)

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
[CrossRef]

1999 (2)

J. Yang and J. M. Kleijn, “Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate,” Biophys. J.76(1), 323–332 (1999).
[CrossRef] [PubMed]

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

1997 (1)

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

1995 (1)

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

1958 (1)

L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of disces of arbitrary shape,” Philips Res. Rep.13, 1–9 (1958).

1936 (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem.28(8), 988–994 (1936).
[CrossRef]

Adiga, N.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Ballif, C.

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

Bates, A.

S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells87(1-4), 785–794 (2005).
[CrossRef]

Cao, X.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Chan, Y. C.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

Chang, C. H.

Chang, F. Y.

Chang, S. T.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Chang, W. L.

Chen, C.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Chen, J. Y.

Chiu, M. Y.

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Dai, B. T.

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

Decker, J. Y.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Deng, X.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Fan, H. T.

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Fan, Q. H.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Fernandez, A.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Fujishima, A.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Haug, F. J.

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

He, R. Y.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Herman, S. M.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Hsu, M. H.

Hsu, W. C.

Huang, C. K.

Huang, J. Y.

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Hwangbo, C. K.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Ingler, W.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Jang, S. J.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Joo, D. H.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Kim, C. M.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Kim, E. H.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Kim, T. G.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Kim, Y. P.

Kleijn, J. M.

J. Yang and J. M. Kleijn, “Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate,” Biophys. J.76(1), 323–332 (1999).
[CrossRef] [PubMed]

Ko, Y. H.

Konagai, M.

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

Kung, C. Y.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Lam, Y. W.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

Lavayen, V.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Lee, B. G.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Lee, Y. P.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Lee, Y. T.

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Leem, J. W.

J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B29(3), 357–362 (2012).
[CrossRef]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
[CrossRef] [PubMed]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011).
[CrossRef]

J. W. Leem and J. S. Yu, “Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells,” Phys. Status Solidi. A208(9), 2220–2225 (2011).
[CrossRef]

Li, G. H.

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Liao, X.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Lien, S. Y.

S. Y. Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films518(21), S10–S13 (2010).
[CrossRef]

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

Lin, C. Y.

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

Lin, S. H.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

Liu, J. C.

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

Michael, S.

S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells87(1-4), 785–794 (2005).
[CrossRef]

Miyajima, S.

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

Moharam, M. G.

Myong, S. Y.

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

Newcomb, S. B.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Niquille, X.

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

O’Dwyer, C.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pan, S. S.

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Park, C. Y.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Park, G. C.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Park, Y. J.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Pei, Z.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Perry, M. D.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Phillion, D. W.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Pommet, D. A.

Rao, T. N.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
[CrossRef]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Shen, C. H.

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

Shieh, J. M.

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

Shin, Y. C.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Sobahan, K. M. A.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Söderström, T.

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010).
[CrossRef] [PubMed]

Sriprapha, K.

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Sun, K. W.

Sun, W. C.

Sweeney, D. W.

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Szachowicz, M.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Tang, M.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Teng, X. M.

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Terrazzoni, V.

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

Torres, C. M.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Tryk, D. A.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
[CrossRef]

Tsai, M. A.

Tseng, P. C.

van der Pauw, L. J.

L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of disces of arbitrary shape,” Philips Res. Rep.13, 1–9 (1958).

Varga, M. G.

Visimberga, G.

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Wang, W. C.

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

Webb, D. P.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem.28(8), 988–994 (1936).
[CrossRef]

Wu, B. R.

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

Wuu, D. S.

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

Xiang, X.

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

Yamada, A.

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Yang, J.

J. Yang and J. M. Kleijn, “Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate,” Biophys. J.76(1), 323–332 (1999).
[CrossRef] [PubMed]

Ye, C.

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Yu, J. S.

J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B29(3), 357–362 (2012).
[CrossRef]

J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express19(S3Suppl 3), A258–A268 (2011).
[CrossRef] [PubMed]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express19(1), 297–305 (2011).
[CrossRef] [PubMed]

J. W. Leem and J. S. Yu, “Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells,” Phys. Status Solidi. A208(9), 2220–2225 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010).
[CrossRef] [PubMed]

Yu, P.

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Zhong, Y.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

Appl. Phys. A (1)

C. Ye, S. S. Pan, X. M. Teng, H. T. Fan, and G. H. Li, “Preparation and optical properties of nanocrystalline thin films in the ZnO-TiO2 system,” Appl. Phys. A90(2), 375–378 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010).
[CrossRef]

S. Y. Myong, K. Sriprapha, S. Miyajima, M. Konagai, and A. Yamada, “High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer,” Appl. Phys. Lett.90(26), 263509 (2007).
[CrossRef]

T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett.94(6), 063501 (2009).
[CrossRef]

Biophys. J. (1)

J. Yang and J. M. Kleijn, “Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate,” Biophys. J.76(1), 323–332 (1999).
[CrossRef] [PubMed]

Ind. Eng. Chem. (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem.28(8), 988–994 (1936).
[CrossRef]

J. Appl. Phys. (1)

Q. H. Fan, C. Chen, X. Liao, X. Xiang, X. Cao, W. Ingler, N. Adiga, and X. Deng, “Spectroscopic aspects of front transparent conductive films for a-Si thin film solar cells,” J. Appl. Phys.107(3), 034505 (2010).
[CrossRef]

J. Electron. Mater. (1)

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater.28(12), 1452–1456 (1999).
[CrossRef]

J. Mater. Res. (1)

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res.23(09), 2500–2505 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Photochem. Rev. (1)

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney, and M. D. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Technol. B15(6), 2439–2443 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys.46(6A), 3333–3336 (2007).
[CrossRef]

Nat. Nanotechnol. (1)

C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nanotechnol.4(4), 239–244 (2009).
[CrossRef] [PubMed]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Philips Res. Rep. (1)

L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of disces of arbitrary shape,” Philips Res. Rep.13, 1–9 (1958).

Phys. Status Solidi. A (1)

J. W. Leem and J. S. Yu, “Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells,” Phys. Status Solidi. A208(9), 2220–2225 (2011).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011).
[CrossRef]

J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, “Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability,” Sol. Energy Mater. Sol. Cells98, 277–282 (2012).
[CrossRef]

S. Michael and A. Bates, “The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package,” Sol. Energy Mater. Sol. Cells87(1-4), 785–794 (2005).
[CrossRef]

Thin Solid Films (3)

S. T. Chang, M. Tang, R. Y. He, W. C. Wang, Z. Pei, and C. Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films518(6), S250–S254 (2010).
[CrossRef]

S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD,” Thin Solid Films516(5), 747–750 (2008).
[CrossRef]

S. Y. Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells,” Thin Solid Films518(21), S10–S13 (2010).
[CrossRef]

Other (4)

NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra , Accessed 15 Jan. (2012).

ATLAS User's Manual, Silvaco international, Feb (2012).

SOPRA, http://www.sopra-sa.com , Accessed 1 Dec. (2011).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of process steps for the fabrication of the parabola-shaped ITO SWGs on ITO films/Si and glass substrates. The side- and top-view SEM images of ITO SWGs as a function of re-sputtering time for OT and RBdP are also shown.

Fig. 2
Fig. 2

Contour plots of the calculated reflectance variation as a function of wavelength at different (a) OT and (b) RBdP for ITO SWG nanostructures. The 2D and 3D simulation models used in these calculations are also shown in (a) and (b).

Fig. 3
Fig. 3

(a) Measured reflectance spectra at different incident angles of θi = 8-70° for the parabola-shaped ITO SWG/ITO film on the Si substrate and (b) contour plots of the variation of calculated reflectance spectra of the (i) ITO film and (ii) parabola-shaped ITO SWG/ITO film on Si substrates as a function of the incident angle of light. For comparison, the reflectance spectra of Si substrate (θi = 8°) and conventional 460 nm-thick ITO film on Si substrate (θi = 8-70°) are also shown in the left inset of (a). The estimated SWR values of the ITO film and ITO SWG/ITO film on Si substrates as a function of incident angle are shown in the right inset of (a). The 3D simulation models of the corresponding structures are shown in (b).

Fig. 4
Fig. 4

Photographs of (a) conventional ITO film and parabola-shaped ITO SWG/ITO film on Si substrates and (b) water droplets on the samples and (c) 30°-tilted oblique-view SEM images of the parabola-shaped ITO SWG/ITO film. The side-view SEM image of the parabola-shaped ITO SWG/ITO film is shown in the inset of (c).

Fig. 5
Fig. 5

(a) (i) Schematic diagram of a-Si:H/μc-Si:H tandem thin film solar cell structure incorporated with the parabola-shaped ITO SWG/ITO film as an antireflective electrode layer, (ii) calculated effective refractive index profile of the ITO SWG, and (iii) the refractive index (n) and extinction coefficient (k) of the ITO used in this simulation and (b) J-V characteristics of a-Si:H/μc-Si:H tandem thin film solar cells with the conventional ITO film and parabola-shaped ITO SWG/ITO film as an antireflective electrode layer. The parameters of a-Si:H/μc-Si:H tandem thin film solar cells with the ITO film and parabola-shaped ITO SWG/ITO film are summarized in the inset of (b), respectively.

Tables (1)

Tables Icon

Table 1 Effective Electrical Properties of Conventional ITO Film and Parabola-shaped ITO SWG/ITO Film

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ r,m = mλ Λn ,

Metrics