Abstract

Nano-patterned glass superstrates obtained via a large-area production approach are desirable for antireflection and light trapping in thin-film solar cells. The tapered nanostructures allow a graded refractive index profile between the glass and material interfaces, leading to suppressed surface reflection and increased forward diffraction of light. In this work, we investigate nanostructured glass patterns with different aspect ratios using scalable nanosphere lithography for hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Compared to flat glass cell and Asahi U-type glass cell, enhancements in short-circuit current density (Jsc) of 51.6% and 8%, respectively, were achieved for a moderate aspect ratio of 0.16. The measured external quantum efficiencies (EQE) spectra confirmed a broadband enhancement due to antireflection and light trapping properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Service, “Solar energy. Can the upstarts top silicon?” Science319(5864), 718–720 (2008).
    [PubMed]
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).
  3. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).
  4. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).
  5. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express18(Suppl 2), A133–A138 (2010).
    [PubMed]
  6. T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).
  7. J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).
  8. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).
  9. J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).
  10. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
    [PubMed]
  12. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
    [PubMed]
  13. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008).
    [PubMed]
  14. Y. H. Pai, Y. C. Lin, J. L. Tsai, and G. R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array,” Opt. Express19(3), 1680–1690 (2011).
    [PubMed]
  15. H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).
  16. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt.36(30), 7826–7837 (1997).
    [PubMed]

2012 (1)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

2011 (1)

2010 (4)

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express18(Suppl 2), A133–A138 (2010).
[PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

2009 (1)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

2008 (3)

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science319(5864), 718–720 (2008).
[PubMed]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008).
[PubMed]

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

2007 (1)

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

2006 (1)

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).

2004 (1)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

2001 (1)

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).

1997 (1)

1983 (1)

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

Abeles, B.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Bläsi, B.

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Bokalic, M.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Campa, A.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Cebulka, J. M.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

Chang, Y. C.

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Chen, C. C.

Cheng, Y. J.

Chiu, C. H.

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Doshi, P.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Dutta, V.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Eisele, C.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Franken, R. H.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Gerber, A.

Haase, C.

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Hsu, S. H.

Jellison, G. E.

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).

Kambe, M.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Kirchartz, T.

Kondo, M.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).

Krc, J.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Kuo, H. C.

Lee, J. C.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Li, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Lin, G. R.

Lin, Y. C.

Lipovsek, B.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Lu, T. C.

Matsui, T.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Nebel, C. E.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).

Oyama, T.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Pai, Y. H.

Pelz, J.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

Peters, M.

Rath, J. K.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Rau, U.

Rohatgi, A.

Sai, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Sauvain, E. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Schropp, R. E. I.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Schuttauf, J. A.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Service, R. F.

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science319(5864), 718–720 (2008).
[PubMed]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Song, J. S.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Stiebig, H.

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).

Stolk, R. L.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Stutzmann, M.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Tiedje, T.

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

Topic, M.

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Tsai, J. L.

Ulbrich, C.

van der Werf, C. H. M.

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Wang, S. C.

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

Xu, W.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Yi, J. S.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Yoo, J. S.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Yoon, K. H.

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Yu, P.

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

ACS Nano (1)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).

J. Appl. Phys. (2)

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).

J. Non-Cryst. Solids (1)

H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).

Nano Lett. (1)

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[PubMed]

Opt. Express (3)

Prog. Photovolt. Res. Appl. (2)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).

Science (1)

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science319(5864), 718–720 (2008).
[PubMed]

Superlattices Microstruct. (1)

J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).

Thin Solid Films (1)

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic fabrication process for patterned glass a-Si:H thin film solar cells. (a) The hexagonal array of closely packed polystyrene nanospheres was first formed on glass. (b) RIE was involved for etching the glass superstrate. (c) The front ITO and p-i-n a-Si:H stacks were subsequently deposited on glass superstrate. An 80 nm ITO served as a back contact to reduce series resistance. (d) A 1000 nm Al was evaporated as a back reflector.

Fig. 2
Fig. 2

(a)–(d) Tilted 45 degree SEM images of patterned glass superstrates with aspect ratios of 0.16, 0.29, 0.63, and 0.75, respectively. The scale bar represents 1 µm in length.

Fig. 3
Fig. 3

(a) The SEM image of the rear surface morphology of a complete a-Si:H cell with a patterned glass with an aspect ratio of 0.16 after Al covering. (b) Cross-sectional SEM image of a patterned glass with an aspect ratio of 0.75 showing air gaps between patterns. (c) The TEM image of an Asahi-U type a-Si:H cell with a textured SnO2:F electrode.

Fig. 4
Fig. 4

(a) Cross-sectional TEM image of a cell deposited on the patterned glass with an aspect ratio of 0.16, and (b) an enlarged image of the red frame indicated in (a). Yellow arrows mark the 15 nm thick p-layer. (c) A cell deposited on a patterned glass with an aspect ratio of 0.75, showing non-conformal growth of ITO and the a-Si:H layers and (d) an enlarged image of the red frame in (c), indicating a flimsy p-layer on the sidewall.

Fig. 5
Fig. 5

(a) The reflectance spectra for the flat reference, Asahi U-type glass, and patterned glass a-Si:H cells with various aspect ratios. (b) The AM1.5G solar spectrum weighted reflectance as a function of aspect ratios.

Fig. 6
Fig. 6

The solar cell characteristics of patterned glass superstrates as a function of aspect ratios.

Fig. 7
Fig. 7

(a) The current density–voltage characteristics under one sun AM1.5G illumination, (b) the corresponding EQE spectra, and (c) calculated IQE spectra.

Tables (1)

Tables Icon

Table 1 Current Density–Voltage Characteristics of a-Si:H Solar Cells with Different Superstrates

Metrics